Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:46:28.943Z Has data issue: false hasContentIssue false

All Hot Wire CVD Organic/Inorganic Hybrid Barrier Layers for Thin Film Encapsulation

Published online by Cambridge University Press:  28 May 2012

Diederick A. Spee
Affiliation:
Nanophotonics – Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3508 TA Utrecht, The Netherlands
Merijn R. Schipper
Affiliation:
Nanophotonics – Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3508 TA Utrecht, The Netherlands
Karine H.M. van der Werf
Affiliation:
Nanophotonics – Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3508 TA Utrecht, The Netherlands
Jatindra K. Rath
Affiliation:
Nanophotonics – Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3508 TA Utrecht, The Netherlands
Ruud E.I. Schropp
Affiliation:
Nanophotonics – Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3508 TA Utrecht, The Netherlands
Get access

Abstract

A water vapor barrier layer is presented that is deposited entirely at temperatures below ∼100oC. Our method, using hot wire chemical vapor deposition (HWCVD), is effective in reducing the issue of pinholes in single layers of silicon nitride (SiNx) made at such low substrate temperatures. We succeeded in depositing an all hot-wire simple three-layer structure consisting of two low-temperature SiNx layers with a polymer layer in between, exhibiting a water vapor transmission rate (WVTR) as low as 5*10-6 g/m2/day, determined at a temperature of 60°C and a relative humidity of 90%. This WVTR is low enough for organic and polymer devices. In a second experiment the robustness of the barrier layer is shown with respect to environmental dust.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schaepkens, M., Kim, T.W., Erlat, A.G., Yan, M., Flanagan, K.W., Heller, C.M. and McConnelee, P.A., J. Vac. Sci. Technol. A 22(4), p. 1716 (2004).Google Scholar
2. Lewis, J., Materials Today 9(4), p.38 (2006).Google Scholar
3. Charton, C., Schiller, N., Fahland, M., Hollander, A., Wedel, A. and Noller, K., Thin Solid Films 502, p. 99 (2006).Google Scholar
4. Verlaan, V., Bakker, R., van der Werf, C.H.M., Houweling, Z.S., Mai, Y., Rath, J.K. and Schropp, R.E.I., Surf. Coat. Technol. 201, p. 9285 (2007).Google Scholar
5. Mao, Y., Gleason, K.K., Langmuir 20, p. 248 (2004).Google Scholar
6. Schropp, R.E.I., van Bommel, C.O., van der Werf, C.H.M., Brinza, M., van Swaaij, G.A., Rath, J.K., Li, H.B.T., Schüttauf, J.W.A., Proc. of 24th European Photovoltaic Solar Energy Conference, p.2328 (2009).Google Scholar
7. Spee, D.A., Bakker, R., van der Werf, C.H.M., van Steenbergen, M.J., Rath, J.K., Schropp, R.E.I., Thin Solid Films 519, p. 4479 (2011).Google Scholar
8. Bakker, R., Verlaan, V., van der Werf, C.H.M., Rath, J.K., Gleason, K.K. and Schropp, R.E.I., Surf. Coat. Technol. 201, p. 9422 (2007).Google Scholar
9. Lau, K.K.S. and Gleason, K.K., Macromolecules 39, p. 3688 (2006).Google Scholar
10. Nisato, G., Bouten, P.C.P., Slikkerveer, P.J., Bennett, W.D., Graff, G.L., Rutherford, N., and Wiese, L., Proc. Asia Display, p. 1435 (2001).Google Scholar
11. Verlaan, V., Houweling, Z.S., van der Werf, C.H.M., Romijn, I.G., Weeber, A.W., Goldbach, H.D. and Schropp, R.E.I., Thin Solid Films 516, p. 533 (2008).Google Scholar
12. Graff, G.L., Williford, R.E. and Burrows, P.E., J. Appl. Phys. 96, 1840 (2004)Google Scholar
13. PCT/NL2011/050601 (US provisional patent application 61/490,604) Google Scholar