Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:15:40.743Z Has data issue: false hasContentIssue false

AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors (MOSHFETs) with the Delta-Doped Barrier Layer

Published online by Cambridge University Press:  11 February 2011

Z. Y. Fan
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
J. Li
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
J. Y. Lin
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
H. X. Jiang
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
Y. Liu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON, K1A 0R6, Canada
J. A. Bardwell
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON, K1A 0R6, Canada
J. B. Webb
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON, K1A 0R6, Canada
H. Tang
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, ON, K1A 0R6, Canada
Get access

Abstract

The fabrication and characterization of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with the δ-doped barrier are reported. The incorporation of the SiO2 insulated-gate and the δ-doped barrier into HFET structures reduces the gate leakage and improves the 2D channel carrier mobility. The device has a high drain-current-driving and gate-control capabilities as well as a very high gate-drain breakdown voltage of 200 V, a cutoff frequency of 15 GHz and a maximum frequency of oscillation of 34 GHz for a gate length of 1 μm. These characteristics indicate a great potential of this structure for high-power-microwave applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chow, T. P. and Tyagi, R., IEEE Electron Devices 41, 1481 (1994).Google Scholar
2. Khan, M. Asif, Chen, Q., Yang, J. W., Shur, M. S., Dermott, B. T., and Higgins, J. A., IEEE Electron Device Lett. 17, 325 (1996).Google Scholar
3. Keller, S., Wu, Y. F., Parish, G., Ziang, N., Xu, J. J., Keller, B. P., Denbarra, s. P., and Mishra, U. K., IEEE Electron Device Lett. 48, 552 (2001).Google Scholar
4. Tilak, V., Green, B., Kaper, V., Kim, H., Prunty, T., Smart, J., Shealy, J., and Eastman, L., IEEE Electron Device Lett. 22, 504 (2001).Google Scholar
5. Lee, C., Wang, H., Yang, J., Witkowski, L., Muir, M., Khan, M. A., and Saunier, P., Electron Lett. 38, 924 (2002).Google Scholar
6. Maeda, N., Saitoh, T., Tsubaki, K., Nishida, T., and Kobayash, N., Jpn. J. Appl. Phys., Part 2 38, L987 (1999).Google Scholar
7. Alekseev, E., Nguyen-Tan, P., Pavlidis, D., Micovic, M., Wong, D., and Nguyen, C., Proc. 17th IEEE/Cornell Conf., Ithaca, NY, August, 2000, P84.Google Scholar
8. Tan, W. S., Houstan, P. A., Parbrook, P. J., Wood, D. A., Hill, G., and Whitehouse, C. R., Appl. Phys. Lett. 80, 3207 (2002).Google Scholar
9. Khan, M. Asif, Hu, X., Tarakji, A., Simin, G., Yang, J., Gaska, R., and Shur, M. S., Appl. Phys. Lett. 77, 1339 (2000).Google Scholar
10. Cho, D. H., Shimizu, M., Ide, T., Ookita, H., and Okumura, H., Jpn. J. Appl. Phys. 41, 4481 (2002).Google Scholar
11. Gaffey, B., Guido, L. J., Wang, X. W., and Ma, T. P., IEEE Trans. Electron Devices 48, 458 (2001).Google Scholar
12. Miller, E. J., Dang, X. Z., and Yu, E. T., J. Appl. Phys. 88, 5951 (2000).Google Scholar
13. Fan, Z. Y., Li, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 81 (2002) (being published on Dec. 9 issue).Google Scholar
14. Hsu, L. and Walukiewicz, W., J. Appl. Phys. 89, 1783 (2001).Google Scholar
15. Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N.-Q., Buttari, D., Smorchkova, I. P., Keller, S., DenBaars, S. P., and Mishra, U. K., IEEE Electron Device Lett. 22, 457 (2001).Google Scholar