Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:08:03.239Z Has data issue: false hasContentIssue false

Advances in Understanding of the Crystal Chemistry of Hexavalent Uranium

Published online by Cambridge University Press:  01 February 2011

Peter C. Burns*
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, [email protected]
Get access

Abstract

Research concerning the crystal chemistry of hexavalent U by the Environmental Mineralogy and Crystal Structures research group at Notre Dame has resulted in the description of more than 110 new structures of uranyl compounds (including 36 minerals). New insights into the crystal chemistry of U6+ are presented, with emphasis on recently discovered novel structural connectivities. The structural hierarchy of uranyl minerals and compounds, which was first established for 180 structures in 1996, has been extended to include 145 new structures. The hierarchy is based upon polymerization of polyhedra containing higher-valence cations, and consists of five distinct classes: structures containing isolated polyhedra (7), finite clusters of polyhedra (41), chains of polyhedra (52), sheets of polyhedra (184), and frameworks of polyhedra (41). The dominance of sheets in uranyl compounds (57% of known structures) arises from the unequal distribution of bond-valences within the uranyl polyhedra. Topological relations of the sheets in uranyl compounds are best understood by analysis of the topological distribution of anions within sheets in which sharing of polyhedral edges dominates, and by graphical representation of the connectivity of polyhedra in cases where sharing of vertices of polyhedra dominates the sheet.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Locock, A.J. and Burns, P.C., J. Solid State Chem. 163, 275 (2002).Google Scholar
2. Krivovichev, S.V., Cahill, C.L. and Burns, P.C., Inorg. Chem. 41, 34 (2002).Google Scholar
3. Krivovichev, S.V. and Burns, P.C., Inorg. Chem. 41, 4108 (2002).Google Scholar
4. Li, Y. and Burns, P.C., J. Nucl. Mater. 299, 219 (2001).Google Scholar
5. Burns, P.C., Olson, R.A., Finch, R.J., Hanchar, J.M. and Thibault, Y., J. Nucl. Mater. 278, 290 (2000).Google Scholar
6. Hughes Kubatko, K-A., Helean, K.B., Navrotsky, A. and Burns, P.C., Science 302, 1191 (2003).Google Scholar
7. Buck, E.C., Brown, N.R. and Dietz, N.L., Env. Sci. Technol. 30, 81 (1996)Google Scholar
8. Roh, Y., Lee, S.R., Choi, S.K., Elless, M.P. and Lee, S.Y., Soil Sed. Contam. 9, 463 (2000).Google Scholar
9. Yamakawa, I. and Traina, S.J., Abstracts of Papers of the American Chemical Society 222, 55- GEOC Part 1 (2001).Google Scholar
10. Fuller, C.C., Bargar, J.R., Davis, J.A. and Piana, M.J., Env. Sci. Technol. 36, 158 (2002).Google Scholar
11. Macaskie, L.E., Bonthrone, K.M., Yong, P. and Goddard, D.T., Microbiology 146, 1855 (2000).Google Scholar
12. Finch, R.J., Buck, E.C., Finn, P.A. and Bates, J.K., Mater. Res. Soc. Symp. Proc. 556, 431 (1999).Google Scholar
13. Finn, P.A., Hoh, J.C., Wolf, S.F., Slater, S.A. and Bates, J.K., Radiochim. Acta 74, 65 (1996).Google Scholar
14. Wronkiewicz, D.J., Bates, J.K., Wolf, S.F. and Buck, E.C., J. Nucl. Mater. 238, 78 (1996).Google Scholar
15. Burns, P.C., Ewing, R.C. and Hawthorne, F.C., Can. Mineral. 35, 1551 (1997).Google Scholar
16. Burns, P.C., Miller, M.L. and Ewing, R.C.: Can. Mineral. 34, 845 (1996).Google Scholar
17. Burns, P.C., Rev. Mineral. 38, 23 (1999).Google Scholar
18. Hayden, L.A. and Burns, P.C., J. Solid State Chem. 163, 313 (2002).Google Scholar
19. Burns, P.C. and Hayden, L.A., Acta Cryst. C58, i121 (2002).Google Scholar
20. Hayden, L.A. and Burns, P.C., Can. Mineral. 40, 211 (2002).Google Scholar
21. Krivovichev, S.V. and Burns, P.C., Can. Mineral. 40, 201 (2002).Google Scholar
22. Krivovichev, S.V. and Burns, P.C., J. Solid State Chem. 168, 245 (2002).Google Scholar
23. Krivovichev, S.V. and Burns, P.C., Ziet. Krist. (2003).Google Scholar
24. Krivovichev, S.V. and Burns, P.C., Can. Mineral. 39, 197 (2001).Google Scholar
25. Burns, P.C. and Hughes, K.A., Amer. Mineral. 88, 1165 (2003).Google Scholar
26. Burns, P.C., Can. Mineral. 39, 1139 (2001).Google Scholar
27. Burns, P.C., Amer. Mineral. 85, 801 (2000).Google Scholar
28. Almond, P.M., Peper, S.M., Bakker, E. and Albrecht-Schmitt, T.E., J. Solid State Chem. 168, 358 (2002).Google Scholar
29. Sykora, R.E., McDaniel, S.M., Wells, D.M. and Albrecht-Schmitt, T.E., Inorg. Chem. 41, 5126 (2002).Google Scholar
30. Miller, M.L., Finch, R.J., Burns, P.C. and Ewing, R.C., J. Mater. Res. 11, 3048 (1996).Google Scholar
31. Burns, P.C., Amer. Mineral. 84, 1661 (1999).Google Scholar
32. Burns, P.C., Amer. Mineral. 82, 1176 (1997).Google Scholar
33. Burns, P.C. and Hill, F.C., Can. Mineral. 38, 163 (2000).Google Scholar
34. Burns, P.C. and Deely, K.M., Can. Mineral. 40, 1579 (2002).Google Scholar
35. Li, Y., Burns, P.C. and Gault, R.A., Can. Mineral. 38, 153 (2000).Google Scholar
36. Hughes, K.A. and Burns, P.C., Amer. Mineral. 88, 962 (2003).Google Scholar
37. Krivovichev, S.V. and Burns, P.C., Can. Mineral. 38, 717 (2000).Google Scholar
38. Krivovichev, S.V. and Burns, P.C., J. Solid State Chem. 170, 106 (2003).Google Scholar
39. Krivovichev, S.V. and Burns, P.C., Zeit. Krist. 218, 568 (2003).Google Scholar
40. Locock, A.J. and Burns, P.C., J. Solid State Chem. 175, 372 (2003).Google Scholar
41. Locock, A.J. and Burns, P.C., J. Solid State Chem. 167, 226 (2002).Google Scholar
42. Locock, A.J. and Burns, P.C., J. Solid State Chem. 163, 275 (2002).Google Scholar
43. Krivovichev, S.V., Cahill, C.L. and Burns, P.C., Inorg. Chem. 41, 34 (2002).Google Scholar
44. Wang, X., Huang, J., Liu, L. and Jacobson, A.J., J. of Mater. Chem. 12, 406 (2002).Google Scholar
45. Burns, P.C., Can. Mineral. 39, 1153 (2001).Google Scholar
46. Jackson, J.M. and Burns, P.C., Can. Mineral. 39, 187 (2001).Google Scholar
47. Demartin, F., Gramaccioli, C.M. and Pilati, T., Acta Crystallogr. C48, 1(1992).Google Scholar
48. Li, Y. and Burns, P.C., Can. Mineral. 38, 1433 (2000).Google Scholar