Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T22:14:53.328Z Has data issue: false hasContentIssue false

Advances in the Design of Pillared Clay Catalysts by Surfactant and Polymer Modification

Published online by Cambridge University Press:  15 February 2011

T. J. Pinnavaia
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
Jean-Rémi Butruille
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
Laurent J. Michot
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
Jingie Guan
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
Get access

Abstract

The catalytic properties of pillared clays for organic chemical conversions, especially those occurring in liquid media, can be substantially improved by surfactant modification of the pore structure during the pillaring reaction. For instance, the incorporation of a non-ionic surfactant, such as the alkylated polyethylene oxide C12–14H25–29O(CH2CH2O)5H, in the synthesis of alumina pillared montmorillonite results in a dramatic increase in the interparticle (textural) mesoporosity of the final calcined products. These surfactant-modified mesoporous pillared clays are exceptionally active as catalysts for the diffusion controlled liquid phase alkylation of biphenyl. The enhanced mesoporosity facilitates access of the reactants to the active acid sites in the interlayer nanopores of the pillared clay tactoids. Organic polymeric molecules also can be used to mediate the pore structure of pillared clay materials. The reaction of aluminum chlorohydrate oligomers with Na+ rectorite in the presence of polyvinyl alcohol as a pillaring precursor affords a supergallery alumina pillared rectorite with a basal spacings of 52 Å and a corresponding gallery height of 33 Å under air- dried conditions. A stable gallery height of 23 Å is observed even after treatment with 100% steam at 800°C for 17 hour. The new supergallery intercalate is characterized by a surface area, pore volume, and catalytic cracking activity superior to conventional alumina pillared rectorite and related smectites with 9 Å gallery heights.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weisz, P. B., Chemtech., 498 (1973).Google Scholar
2. Maxwell, I. E., J. Incl. Phenom. 4, 1(1986).Google Scholar
3. Lee, G. S., Mag, J. J., Rocke, S. C. and Garcés, J. M., Catal. Lett. 2, 197 (1989).Google Scholar
4. Wachter, W. A., US Patent No.5 051 385 (1991).Google Scholar
5. Kresge, C. T., Leonowicz, M. E., Roth, W. J. and Vartuli, J. C., US Patent No. 5 098 684 (1992).Google Scholar
6. Butruille, J.-R. and Pinnavaia, T. J., Catal. Today 14, 141 (1992).Google Scholar
7. Kikuchi, E., Matsuda, T., Fujiki, H. and Morita, Y., Appl. Catal. 11, 331 (1984).Google Scholar
8. Sterte, J., Clays Clay Miner. 39, 167 (1991).Google Scholar
9. Mori, T. and Suzuki, K., Chem. Lett. 2165 (1989).Google Scholar
10. Suzuki, K., Masakazu, H., Masuda, H. and Mori, T., J. Chem. Soc., Chem. Commun. 873 (1991).Google Scholar
11. Fahey, D. R., Williams, K. A., Harris, R. J. and Stapp, P. R., US Patent 4,845,066 (1989).Google Scholar
12. Michot, L. J. and Pinnavaia, T. J., Chem. Mater., 4, 1433 (1992).Google Scholar
13. Michot, L. J., Barres, O., Hegg, E. L., and Pinnavaia, T. J., Langmuir 9, 1794 (1993).Google Scholar
14. Michot, L. J. and Pinnavaia, T. J., Clays Clay Miner., 39, 634 (1991).Google Scholar
15. Burch, R., Catal. Today, 2, 2,3 (1988)Google Scholar
16. Figueras, F., Catal. Rev., 30, 457 (1988).Google Scholar
17. Schoonheydt, R. A., Stud Surf. Sci. Catal., 58, 201 (1991).Google Scholar
18. Occelli, M. L., Ind. Eng. Chem. Prod. Res. Dev., 22, 553 (1983).Google Scholar
19. Guan, J., Pinnavaia, T. J., Proc. Inter. Conf. on Soft Chemistry Routes to New Materials, Nante, September 6–10, 1993, J. Rouxel, M. Tournoux and R. Brec, Eds., Trans Tech Publ., pp. 109–114 (1994).Google Scholar
20.. Moini, A., T. J. Pinnavaia,:Solid State Ionics, 26, 119 (1988).Google Scholar
21. Guan, J., Min, E., Yu, Z., Proc. 9th Int. Congr. Catal., Ottawa, Canada, 104, (1988).Google Scholar
22. Butruille, J. R. and Pinnavaia, T. J., Catal. Lett. 12, 187 (1992).Google Scholar
23. Butruille, J. R. and Pinnavaia, T. J. in Multifunctional Mesoporous Inorgnic Inorganic solids edited by Sequeira, C. A. C and Hudson, M. J. 259, 272 Kluwer, Amsterdam (1993)Google Scholar