Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T21:22:01.714Z Has data issue: false hasContentIssue false

Advanced Light Trapping in Thin-film Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Miro Zeman
Affiliation:
[email protected], Delft University of Technology, PVMD Unit /DIMES, Delft, Netherlands
Olindo Isabella
Affiliation:
[email protected], Delft University of Technology, PVMD Unit / DIMES, Delft, Netherlands
Klaus Jaeger
Affiliation:
[email protected], Delft University of Technology, PVMD Unit /DIMES, Delft, Netherlands
Rudi Santbergen
Affiliation:
[email protected], Delft University of Technology, PVMD Unit / DIMES, Delft, Netherlands
Renrong Liang
Affiliation:
[email protected], Delft University of Technology, PVMD Unit /DIMES, Delft, Netherlands
Serge Solntsev
Affiliation:
[email protected], Delft University of Technology, PVMD Unit /DIMES, Delft, Netherlands
Janez Krc
Affiliation:
[email protected], University of Ljubljana, Ljubljana, Slovenia
Get access

Abstract

Photon management is one of the key issues for improving the performance of thin-film silicon solar cells. An important part of the photon management is light trapping that helps to confine photons inside the thin absorber layers. At present light trapping is accomplished by the employment of the refractive-index matching layers at the front side and the high-reflective layers at the back contact of the solar cells and scattering of light at randomly surface-textured interfaces. In this article key issues and potential of light management in thin-film silicon solar cells are addressed. Novel approaches for light trapping are presented such as i) surface textures based on periodic diffraction gratings and modulated surface morphologies for enhanced scattering and anti-reflection, ii) metal nano-particles introducing plasmonic scattering, and iii) one-dimensional photonic-crystal-like structures for back reflectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fischer, D. et al., Proc. 25th IEEE PVSC, Washington, DC, 1996, p. 1053.Google Scholar
2 Guha, S. et al., Proc. PVSEC-15, 2005, Shanghai, China, p. 35.Google Scholar
3 Benagli, S., Borrello, D., et al., Proc. 24th EUPVSEC, Hamburg, Germany (2009).Google Scholar
4 Yamamoto, K., Yoshimi, M., et al., Sol. En. Mat. and Solar Cells, 74 (1-4) (2002) 449455.Google Scholar
5 Yue, G., Yan, B., Owens, J. M., Yang, J., Guha, S., Mater. Res. Soc. Symp. Proc. 808 (2004), 808–A09.Google Scholar
6 Green, M. A., Emery, K., Hishikawa, Y., and Warta, W., Prog. Photovolt. Res. Appl. 17, 320 (2009).Google Scholar
7 Barnett, A. et al., Prog. Photovolt: Res. Appl. 17, 75 (2009).Google Scholar
8 Ginley, D., Green, M. A., Collins, R., MRS Bulletin 33/4, 2008, p. 355.Google Scholar
9 Ivanova, et al., Proc. 23rd EUPVSEC, Valencia, Spain, 2008, p. 734.Google Scholar
10 Loeper, P. et al. Proc. 23rd EUPVSEC, Valencia, Spain, 2008, p.173.Google Scholar
11 Conibeer, G., et al., Sol. Ener. Mat. Sol. C. (2010), doi:10.1016/j.solmat.2010.01.018.Google Scholar
12 Luque, A., Marti, A., Nozik, A. J., MRS Bulletin 32/3, 2007, p. 236.Google Scholar
13 Fay, S., et al., Thin Solid Films 515 (2007) p. 8558.Google Scholar
14 Berginski, M. et al., Thin Solid Films 516 (2008) p. 5836.Google Scholar
15 Kambe, M. et al., Proc. 34th IEEE PVSEC, 2009.Google Scholar
16 Das, C., Lambertz, A., Huepkes, J., Reetz, W., and Finger, F., Appl. Phys. Lett. 92, 053509 (2008).Google Scholar
17 Dominé, D., Buehlmann, P., Bailat, J., Billet, A., Feltrin, A., and Ballif, Ch., Phys. Stat. Sol. (RRL) 2, 163165 (2008).Google Scholar
18 Zeng, L. et al., Appl. Phys. Lett., 93 221105 (2008).Google Scholar
19 Isabella, O. et al., Proc. 24th EUPVSEC, Hamburg, Germany, 2009, p. 2304.Google Scholar
20 Sato, K., Gotoh, Y., Wakayama, Y., et al., Rep. Res. Lab.: Asahi Glass Co. Ltd. 42, 129 (1992).Google Scholar
21 Berginski, M., Hüpkes, J., Schulte, M., et al., J. Appl. Phys. 101, 074903 (2007).Google Scholar
22 Zeman, M., Willemen, J.A., Vosteen, L.L.A., Tao, G. and Metselaar, J.W., Sol. Energ. Mat. Sol. C 46, 81 (1997).Google Scholar
23 Krc, J., Smole, F., and Topic, M., Prog. Photovolt. Res. Appl. 11, 15 (2003).Google Scholar
24 Jaeger, K. and Zeman, M., Appl. Phys. Lett. 95, 171108 (2009).Google Scholar
25 Dominé, D., Haug, F.-J., Battaglia, C., and Ballif, C., J. Appl. Phys. 107, 044504 (2010).Google Scholar
26 Born, M., and Wolf, E., Principles of optics, 7th ed. (Cambridge University Press, Cambridge, 1999), chapter 13.Google Scholar
27 Born, M., and Wolf, E., Principles of optics, 7th ed. (Cambridge University Press, Cambridge, 1999), chapter 8.Google Scholar
28 Dominé, D., Buehlmann, P., Bailat, J., Billet, A., Feltrin, A., and Ballif, C., Phys. Status Solidi (RRL) 2, 163165 (2008).Google Scholar
29 Krč, J., Zeman, M., et al., Mater. Res. Soc. Symp. Proc. Vol. 910, 2006, 0910–A25.Google Scholar
30 Campa, A., Isabella, O., Erven, R. van, Peeters, P., Borg, H., Krc, J., Topic, M. and Zeman, M., Prog. Photovolt: Res. Appl. (2010), 10.1002/pip.940.Google Scholar
31 Isabella, O. et al., in Proc. 23rd EU-PVSEC, Valencia, Spain (2008), 3AV.1.48.Google Scholar
32 Haug, F.-J. et al., in Proc. 21st EUPVSEC, Dresden, Germany (2006).Google Scholar
33 Isabella, O., Moll, F., Krč, J. and Zeman, M., Phys. Status Solidi A 207 (3) 642646 (2010).Google Scholar
34 Atwater, H.A., Polman, A., Nat. Mater. 9, 205213 (2010).Google Scholar
35 Stuart, H.R., Hall, D.G., Appl. Phys. Lett. 73, 38153817 (1998).Google Scholar
36 Springer, J., Poruba, A., Mullerova, L., et al., J. Appl. Phys. 95, 1427 (2004).Google Scholar
37 Krc, J., Zeman, M., Luxembourg, S. and Topic, M., Appl. Phys. Lett. 94 (15) (2009) 153501.Google Scholar
38 Isabella, O., Lipovsek, B., Krč, J., Zeman, M., Mater. Res. Soc. Symp. Proc. 1153 (2009), 1153–A03.Google Scholar