Published online by Cambridge University Press: 22 February 2011
A combination of Electron Cyclotron Resonance (ECR) plasma, electrochemical, and chemical growth process were examined to synthesize dielectric surface passivation layers on InSb. The material properties of ECR-grown SiOx Ny on InSb at temperatures from 30°C to 250°C were investigated. Composition analysis was done using Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD). The electrical quality of the passivation layer was characterized with capacitance-voltage (C-V) measurements on metal-insulator-semiconductor structures over the frequency range from 1 kHz to 1 MHz. Sulfided layers, Si3ON2 on InSb, and sulfided layers capped with S3ON2 all exhibited good C-V properties consistent with interface state densities on the order of 1011/cm2-eV, and flatband voltages of magnitude less than 1 V. The difference in adhesion of Si3N4 on InSb and the adhesion of Si3ON2 on InSb was described in terms of the strength of the bonding at the dielectric-InSb interface. This work is the first to demonstrate passivation of an InSb surface with high-quality ECR silicon oxynitrides grown at room temperature.