Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T04:22:25.574Z Has data issue: false hasContentIssue false

Adhesion at Metal-Ceramic Interfaces: Ion Beam Enhancement and the Role of Contaminants

Published online by Cambridge University Press:  22 February 2011

J. E. E. Baglin*
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598.
Get access

Abstract

Enhanced adhesion of a film of non-reactive metal deposited on a ceramic or glass substrate can be produced by irradiating the interface with an ion beam. The resulting bond can be improved by subsequent heat treatment. The interface remains abrupt. The mechanism of this bonding is discussed, and the effects of interface contaminants are examined for the Cu-Al2O3 and Au-Al2O3 systems. Finally it is noted that strong adhesion is produced when Al2O3 is subjected to preferential sputtering at the time of Cu deposition; the resulting interface chemistry is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baglin, J.E.E. and Clark, G.J., Nuclear Instruments and Methods, B7/8 881 (1985).CrossRefGoogle Scholar
2. Baglin, J.E.E., Clark, G. J. and Bottiger, J., Proc. Mat. Res. Soc. 25 179 (1984).Google Scholar
3. Tombrello, T. A., Proc. Mat. Res. Soc. 25 183 (1984).Google Scholar
4. Griffith, J.E., Qiu, Y. and Tombrello, T.A., Nucl. Instrum. and Methods 198 607 (1982).Google Scholar
5. Jacobson, S., Jonsson, B. and Sundqvist, B., Thin Solid Fims 107 89 (1983).CrossRefGoogle Scholar
6. Sood, D.K., Bond, P.D. and Badwal, S. P. S., Proc. Mat. Res. Soc. 27 565 (1983).CrossRefGoogle Scholar
7. Pronko, P.P., McCormick, A.W., Ingram, D.C., Rai, A.K., Woollam, J.A., Appleton, B.R. and Poker, D.B., Proc. Mat. Res. Soc. 27 559 (1984).Google Scholar
8. Wittmer, M., Proc. Mat. Res. Soc. 40 (1985).Google Scholar
9. Burgess, J.F., Neugebauer, C.A. and Flanagan, G., J. Electrochem. Soc. 122 688 (1975).Google Scholar
10. Johnson, K.H. and Pepper, S.V., J. Appl. Phys. 53 6634 (1982).Google Scholar
11. Johnson, W.L., Cheng, Y-T., VanRossum, M. and Nicolet, M-A., Nucl. Instrum. and Methods, B7/8 657 (1985).Google Scholar
12. d'Heurle, F., Baglin, J.E.E. and Clark, G.J., J. Appl. Phys. 57 1426 (1985).Google Scholar
13. Kronberg, M.L., Acta Met. 5 507 (1957).CrossRefGoogle Scholar
14. French, T.M., Somorjai, J.A., J. Phys. Chem. 74 2489 (1970).Google Scholar
15. Taglauer, E. and Heiland, W., Proc. Symposium on Sputtering, eds. Varga, P., Betz, G., Viehbock, F.P., Vienna (1980).Google Scholar
16. Varga, P. and Taglauer, E., J. Nuclear Materials 111 726 (1982)Google Scholar
17. Pepper, S.V., J. Appl. Phys. 47 801 (1976).Google Scholar
18. Pepper, S.V., J. Appl. Phys. 50 8062 (1979).Google Scholar