Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T06:27:31.286Z Has data issue: false hasContentIssue false

Activation Volumes in the Yield Strength Anomaly Domain of Ni3(Al,Ta).

Published online by Cambridge University Press:  22 February 2011

P. Spätig
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne, (Switzerland).
J. Bonneville
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne, (Switzerland).
J.-L. Martin
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne, (Switzerland).
Get access

Abstract

Ni3(Al,Ta) single crystals have been deformed in compression in the temperature range of the flow stress anomaly (293–780K). The strain-rate sensitivity (SRS) of the flow stress has been characterised by using a technique of repeated stress relaxations that allows for the measurement of the true (or effective) activation volume (Veff). When measured at the conventional critical resolved shear stress (CRSS), Veff exhibits as a function of temperature a sharp discontinuity close to 470K. When the temperature is held constant (420K), the discontinuity of Veff occurs along the stress-strain curve at approximately 3% strain; the stress for both discontinuities is approximately the same. These results suggest a change in the rate controlling mechanism that is dependent on stress as much or more than temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lowrie, R., Trans. AIME, 194, 1093 (1952).Google Scholar
[2] Westbrook, I. H., Trans. TMS-AIME, 209, 898 (1957).Google Scholar
[3] Umakoshi, Y., Pope, D.P. and Vitek, V., Acta Met., 32, 449 (1984).Google Scholar
[4] Miura, S., Ochiai, S., Oya, Y., Mishima, Y. and Suzuki, T. in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A.I., Stoloff, N. S. and Koch, C. C. (Mat. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989) pp. 341346.Google Scholar
[5] Takasugi, T., Watanabe, S., Izumi, O. and Fat-Halla, N.K., Acta Met., 37, 3425 (1989).Google Scholar
[6] Thornton, P.H., Davies, R.G. and Johnston, T.L., Metall. Trans., 207, 1 (1970).Google Scholar
[7] Ezz, S. S. and Hirsch, P. B., Phil. Mag. A, 69, 105 (1994).Google Scholar
[8] Bonneville, J. and Martin, J.-L. in High-Temperature Ordered Intermetallic Alloys IV. edited by Johnson, L. A., Pope, D. P. and Stiegler, J. O. (Mat. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991) pp. 629634.Google Scholar
[9] Bonneville, J., Spätig, P. and Martin, J.-L., This conference.Google Scholar
[10] Staton-Bevan, A. E., Phil. Mag. A, 47, 939 (1983).Google Scholar
[11] Spätig, P., Bonneville, J. and Martin, J.-L., Mat. Sci. Eng. A, 167, 73 (1993).Google Scholar
[12] Bonneville, J., Baluc, N. and Martin, J.-L. in Intermetallic Compounds-Structure and Mechanical Properties, edited by Izumi, O. (Proc. 6th JIMIS on Intermetallic, Sendai, The Japan Institute of Metals 1991) pp. 323330.Google Scholar
[13] Spätig, P. and Bonneville, J., in preparation.Google Scholar
[14] Guiu, F. and Pratt, P. L., Phys. Stat. Sol. 6, 111 (1964).Google Scholar
[15] Baluc, N., Bonneville, J., Hemker, K. J., Martin, J.-L., Schäublin, R. and Spätig, P., Mat. Sci. Eng. A, 164, 370 (1993).Google Scholar
[16] Spätig, P. Bonneville, J. and Martin, J.-L, to be published.Google Scholar
[17] Spätig, P. Bonneville, J. and Martin, J.-L in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, Ian, Darolia, Ram Daniel Whittenberger, J. and Yoo, Man H. (Mat. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993) pp. 429434.Google Scholar
[18] Spätig, P. Bonneville, J. and Martin, J.-L, J. Phys. III France, 4, 1017 (1994).Google Scholar
[19] Hirsch, P. B., Phil. Mag. A, 65, 569 (1992).Google Scholar
[20] Khanta, M., Cserti, J. and Vitek, V., Scripta Metall. Mater., 27, 481 (1992).Google Scholar
[21] Paidar, V., Pope, D. P. and Vitek, V., Acta Metall, 32, 435 (1984).Google Scholar
[22] Spätig, P. Bonneville, J. and Martin, J.-L in Strength of Materials, edited by Oikawa, H., Maruyama, K., Takeuchi, S. and Yamaguchi, M. (Proc. 10th ICSMA, Sendai, The Japan Institute of Metals 1994) pp. 353356.Google Scholar