Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T15:03:04.705Z Has data issue: false hasContentIssue false

Activation of nano-Ca2MnO4 for electrochemical lithium intercalation

Published online by Cambridge University Press:  07 August 2015

Yuri Surace
Affiliation:
Laboratory Materials for Energy Conversion, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, CH-8600 Dübendorf, Switzerland
Mário Simões
Affiliation:
Laboratory Materials for Energy Conversion, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, CH-8600 Dübendorf, Switzerland
Lassi Karvonen
Affiliation:
Laboratory Materials for Energy Conversion, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, CH-8600 Dübendorf, Switzerland
Corsin Battaglia
Affiliation:
Laboratory Materials for Energy Conversion, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, CH-8600 Dübendorf, Switzerland
Simone Pokrant
Affiliation:
Laboratory Materials for Energy Conversion, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, CH-8600 Dübendorf, Switzerland
Anke Weidenkaff
Affiliation:
Materials Chemistry, Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, DE-70569 Stuttgart; Germany
Get access

Abstract

Ca2MnO4 nanoparticles were prepared by the Pechini method and acid treated to extract Ca2+ ions. Structural, morphological and spectroscopic analyses by XRD, SEM/EDX, TEM/EDS and Raman revealed the formation of an amorphous outer layer at the particles surface with a preserved inner crystalline bulk. Thanks to the outer layer, which is electrochemically active, the acid-treated compounds showed capacity up to 150 Ah/kg. The crystalline bulk improved cycling stability, allowing reaching capacity retention up to 70% after 30 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Y., Huang, H.Y.S., in: 2011 MRS Spring Meeting, San Francisco, CA, 2011, pp. 4348.Google Scholar
Amine, K., Kanno, R., Tzeng, Y.H., MRS Bull., 39 (2014) 395405.CrossRefGoogle Scholar
Michel, C.R., Amigo, R., Casan-Pastor, N., Chem. Mat., 11 (1999) 195197.CrossRefGoogle Scholar
Surace, Y., Simoes, M., Eilertsen, J., Karvonen, L., Pokrant, S., Weidenkaff, A., Solid State Ion., 266 (2014) 3643.CrossRefGoogle Scholar
Jiang, C.H., Hosono, E., Zhou, H.S., Nano Today, 1 (2006) 2833.CrossRefGoogle Scholar
Fawcett, I.D., Sunstrom, J.E., Greenblatt, M., Croft, M., Ramanujachary, K.V., Chem. Mat., 10 (1998) 36433651.CrossRefGoogle Scholar
Lee, H.Y., Goodenough, J.B., J. Solid State Chem., 144 (1999) 220223.CrossRefGoogle Scholar
Galceran, M., Pujol, M.C., Aguilo, M., Diaz, F., J. Sol-Gel Sci. Technol., 42 (2007) 7988.CrossRefGoogle Scholar
Baddour-Hadjean, R., Pereira-Ramos, J.P., Chem. Rev., 110 (2010) 12781319.CrossRefGoogle Scholar