Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:06:36.975Z Has data issue: false hasContentIssue false

Activation Characteristics of Implanted Dopants in InAs, GaSb and GaP After Rapid Thermal Annealing

Published online by Cambridge University Press:  26 February 2011

A. R. Von Neida
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA
J. M. Brown
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA
Get access

Abstract

We have studied in some detail the activation of implanted Si and Mg ions in InAs, GaSb and GaP after rapid thermal annealing. Even at doses of 1015 cm−2, the activation percentage of Mg is relatively high after optimum anneals -80% in GaP, 55% in GaSb and 45% in InAs. There is considerable outdiffusion of Mg in all three semiconductors for extended heat treatments. The amphoteric species Si shows good activation (60% for 1015 cm−2 dose) in InAs, a saturation electrically active concentration of ∼3 × 1013 cm−2 in GaP, and very low electrical activity in GaSb. The regrowth and damage removal characteristics in the three materials are similar to those of GaAs and InP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Malik, R. J., Hayes, J. R., Capasso, F., Alavi, K. and Cho, A. Y., IEEE Electron Dev. Lett. EDL–4 383 (1983).Google Scholar
[2] Furukawa, A. and Baba, T., Jap. J. Appl. Phys. 25, L862 (1986).Google Scholar
[3] See for example, Tu, C. W., Hendel, R. H. and Dingle, R. in Gallium Arsenide Technology, ed Ferry, D. K. (H. W. Sams & Co. Indiana USA 1985), Chapter 4.Google Scholar
[4] Woodall, J. M., Freeouf, J. L., Pettit, G. D., Jackson, T. and Kirchner, P., J. Vac. Sci. Technol 14 626 (1981).Google Scholar
[5] Nagata, K., Nakajima, O., Nittono, T., Ito, H. and Ishibushi, T., Electron. Lett. 23, 64 (1987).Google Scholar
[6] Nittono, T., Ito, H., Nakajima, D. and Ishibashi, T., Jap. J. of Appl. Phys. 25, L865 (1986).Google Scholar
[7] See for example Osbourn, G. C., IEEE of Quantum Electron QE–22 1677 (1986).Google Scholar
[8] Allegre, J. and Averous, M., Inst. Phys. Conf. Ser. 46 379 (1977).Google Scholar
[9] Nakashima, K., Jpn. J. of Appl. Phys. 20 1085 (1981).Google Scholar
[10] Lee, M., Nicholas, D. J., Singer, K. E. and Hamilton, B., J. Appl. Phys. 59 2895 (1986).CrossRefGoogle Scholar
[11] Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C. and Williams, J. S., Nucl. Instr. Meth. in Physics Research, B19/20 369 (1987).Google Scholar
[12] Sadana, D. K., Nucl. Instr. Meth. B7/8 375 (1985).CrossRefGoogle Scholar
[13] Sunder, W. A., Barns, R. L., Kometani, T. Y., Parsey, J. M. Jr. and Laudise, R. A., J. Cryst. Growth 78 9 (1986).CrossRefGoogle Scholar
[14] Appleton, B. R., Mat. Res. Soc. Symp. Proc. 27 195 (1984).Google Scholar
[15] Shaanan, M., Kalish, R. and Richter, V., Nucl. Instr. Meth. in Physics Research B7/8 443 (1985).Google Scholar