Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:00:39.592Z Has data issue: false hasContentIssue false

Achieving High Nucleation Density of Diamond Film Under Low Pressures in Hot-Filament Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

Yan Chen
Affiliation:
State Key Laboratory of surface physics, Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing 100080, P.R.China
Jun Mei
Affiliation:
Chinese Academy of Engineering Physics, P.O.Box 521–105, Chengdu 610003, Sichuan, China
Qijin Chen
Affiliation:
State Key Laboratory of surface physics, Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing 100080, P.R.China
Zhangda Lin
Affiliation:
State Key Laboratory of surface physics, Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing 100080, P.R.China
Get access

Abstract

Diamond have been deposited rapidly under low pressures (<0.1 Torr) via hot filament chemical vapor deposition (HFCVD) on either scratched or mirror-smooth single crystalline silicon and titanium with nucleation densities of 109–1011/cm2. The nucleation density increases with the pressure decreases. Hydrogen and methane were used as the gaseous source. Raman spectroscopy and scanning electron microscopy(SEM) were used to analyze the obtained films. This result breaks through the limit that diamond film can only be synthesized above 10 Torr, showing a promising prospect that, as is essential for heteroepitaxial growth of monocrystalline diamond films, diamond film can be easily nucleated on unscratched substrate via Hot Filament CVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Spitsyn, B.V., Bouilov, L.C., and Deryaguin, B.V., J.Cryst.Growth, 52, 219(1981)10.1016/0022-0248(81)90197-4Google Scholar
2 Matsumoto, M., Sato, Y., Kamo, M., and Setaka, N., Jpn.J.Appl.Phys., 71, L183 (1982)10.1143/JJAP.21.L183Google Scholar
3 Kamo, M., Sato, Y., Matosumoto, S., and Setaka, N., J.Cryst.Growth 62, 642 (1983)Google Scholar
4 Ravi, K.V. and Joshi, A., Appl.Phys.Lett., 58(3), 246 (1991)10.1063/1.104703Google Scholar
5 arihara, K., Sasaki, K., Kawarada, M., and Koshina, N., Appl.Phys.Lett. 52, 437 (1988)Google Scholar
6 Suzuki, K., Sawabe, A., Yasada, H., and Inuzaka, T., Appl.Phys.Lett. 50, 728 (1987)10.1063/1.98080Google Scholar
7 Sawabe, A. and Inuzuka, T., Thin Solid Films 137, 89 (1986)Google Scholar
8 Chang, C.-P., Flamm, D.L., Ibbotson, D.E., and Mucha, J.A., J.Appl.Phys, 63, 1744 (1988)10.1063/1.339912Google Scholar
9 Morrish, A.A., Appl.Phys.Lett. 59, 417 (1991)10.1063/1.105448Google Scholar
10 Ravi, K.V. and Koch, C.A., Appl.Phys.Lett. 57, 348 (1992)10.1063/1.103688Google Scholar
11 Stoner, B.R., Ma, G.-H.M., Wolter, S.D., and Glass, J.T., Phys.Rev.B 45, 11067 (1992)10.1103/PhysRevB.45.11067Google Scholar
12 Park, S.S. and Lee, J.Y., J.Appl.Phys, 69, 2618 (1991)10.1063/1.348653Google Scholar
13 Yugo, S., Kimura, T. and Kanai, T., Diamond and Related Materials, 2,328 (1992)10.1016/0925-9635(93)90076-EGoogle Scholar
14 Belton, D.N., Harris, S.J., Schmieg, S.J., Weiner, A.M. and Perry, T.A., Appl.Phys.Lett. 54, 416 (1989)Google Scholar
15 Jiang, X. and Klages, C.-P., Appl. Phys. Lett. 62, 3438 (1993)10.1063/1.109041Google Scholar
16 Wolter, S.D., Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 62, 1215 (1993)10.1063/1.108738Google Scholar
17 debroy, T., Tankala, K., Yarbrough, W.A., and Messier, R., J.Appl.Phys. 68, 2424 (1990)10.1063/1.346502Google Scholar
18 Rird, R.B., Stewatt, W.E., and Lightfoot, E.N., Transport Phenomena (Wiley, New York, 1960)Google Scholar
19 Kline, L.E., Partlow, W.D., and Bies, W.E., J.Appl.Phys. 65,70 (1989)Google Scholar