Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T20:59:35.616Z Has data issue: false hasContentIssue false

Acceptor Binding Energies in GaN and AIN

Published online by Cambridge University Press:  10 February 2011

Francisco Mireles
Affiliation:
Department of Physics & Astronomy and Condensed Matter & Surface Sciences Program Ohio University, Athens OH 45701–2979
Sergio E. Ulloa
Affiliation:
Department of Physics & Astronomy and Condensed Matter & Surface Sciences Program Ohio University, Athens OH 45701–2979
Get access

Abstract

We present binding energy calculations for Mg, Zn, and C substitutional shallow acceptors in GaN and AIN for both, wurtzite (WZ) and zincblende (ZB) crystal phases. The calculations are performed within the effective mass theory through the 6 × 6 Rashba-Sheka-Pikus and the Luttinger- Kohn matrix Hamiltonians for WZ and ZB bulk crystals, respectively. An analytic representation for the pseudopotential is used to introduce the nature of the impurity atom. The energy shift due to polaron effects is also considered in this approach. The estimated ionization energies are in good agreement with those reported experimentally and those reported theoretically employing other methods. We find that the binding energies for ZB GaN acceptors are shallower than the corresponding impurities in the WZ crystalline phase. The binding energy dependence upon the crystal field splitting in the WZ compounds is analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Strite, S., Morkoç, H., J. Vac. Sci. Technol. B 10, 1237, (1992); S. Strite, in Properties of group III nitrides, edited by J.H. Edgar (INSPEC, Kansas City, 1996) pp. 272–275, and references therein.10.1116/1.585897Google Scholar
[2] Strite, S., Jpn. J. Appl. Phys. 33, L699 (1994).Google Scholar
[3] Park, C.H. and Chadi, D.J., Phys. Rev. B 55, 12995 (1997).Google Scholar
[4] Boguslawski, P. and Bernholc, J., Phys. Rev. B 56, 9496 (1997); P. Boguslawski et al., Appl. Phys. Lett. 69, 233 (1996); F. Bernardini et al., Appl. Phys. Lett. 70, 2990 (1997), and references therein; J. Neugebauer and C.G. Van de Walle, Appl. Phys Lett. 68, 1829 (1996).10.1103/PhysRevB.56.9496Google Scholar
[5] Pantelides, S.T., Rev. Mod. Phys. 50, 797 (1978).10.1103/RevModPhys.50.797Google Scholar
[6] Fischer, S., Wetzel, C., Hailer, E.E., and Meyer, B.K., Appl. Phys. Lett. 67, 1298 (1995).10.1063/1.114403Google Scholar
[7] Bir, G.L. and Pikus, G.E., Symmetry and strain-induced effects in semiconductors (Wiley, New York, 1974).Google Scholar
[8] Sirenko, Y. M., Jeon, J. B., Kim, K. W., Littejohn, M. A. and Stroscio, M. A., Phys. Rev. 53, 1997 (1996).10.1103/PhysRevB.53.1997Google Scholar
[9] Luttinger, J.M. and Kohn, W., Phys. Rev. 97, 869 (1955).10.1103/PhysRev.97.869Google Scholar
[10] Lam, P.K., Cohen, M.L. and Zunger, A., Phys. Rev. B 22, 1698 (1980).10.1103/PhysRevB.22.1698Google Scholar
[11] Sak, J., Phys. Rev. B 3, 3356 (1971).10.1103/PhysRevB.3.3356Google Scholar
[12] Kim, K., Lambrecht, W.R.L., Segall, B., and Schilfgaarde, M. van, Phys. Rev. B 56, 7363 (1997).10.1103/PhysRevB.56.7363Google Scholar
[13] Suzuki, M., Uenoyama, T. and Yanase, A., Phys. Rev. B 52, 8132 (1995).10.1103/PhysRevB.52.8132Google Scholar
[14] Majewski, J. A., Städle, M. Vogl, P., Mat. Res. Soc. Symp. Proc. 449, 887 (1997).10.1557/PROC-449-887Google Scholar
[15] Meney, A.T. O'Reilly, E.P., Appl. Phys. Lett. 67, 3013 (1995).10.1063/1.114936Google Scholar
[16] Wang, R., Ruden, P.P., Kolnik, J., Oguzman, I. and Brennan, K.F., Mat. Res. Soc. Symp. Proc. 449, 935 (1997).10.1557/PROC-449-935Google Scholar