Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:57:17.781Z Has data issue: false hasContentIssue false

Absolute measurement of three-dimensional polarization direction using scanning nonlinear dielectric Microscopy

Published online by Cambridge University Press:  01 February 2011

Yasuo Cho
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577, Japan
Tomoyuki Sugihara
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577, Japan
Hiroyuki Odagawa
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577, Japan
Get access

Abstract

A technique for measuring the absolute value of the ferroelectric polarization angle using scanning nonlinear dielectric microscopy (SNDM) is proposed and demonstrated. Using the technique, periodically poled lithium niobate (PPLN) with three-dimensional domain structure is observed. The measured polarization angles agreed well with the actual polarization orientations, and allowed precise visualization of the microdomain structure in PPLN. Through this experiment, we confirmed that SNDM is a useful tool for the absolute evaluation of the three-dimensional polarization direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cho, Y., Lujimoto, K., Hiranaga, Y. and Wagatsuma, Y., Appl.Phys.Lett, 81, 4401 (2002).Google Scholar
2. Park, SE, Wada, S., Cross, L.E. and Shrout, T.R., J.Appl.Phys. 86, 2746(1999).Google Scholar
3. Gruverman, A., Auciello, O., Ramesh, R., and Tokumoto, H., Nanotechnology 8, A38 (1997).Google Scholar
4. Eng, L.M., Gu, H.J., Schneider, G. A., Kopke, U., and Munoz Saldana, J., Appl.Phys.Lett, 74, 233 (1999).Google Scholar
5. Zavala, G., Fendler, J.H., and Trolier-McKinstry, S., J.Appl.Phys. 81, 7480(1997).Google Scholar
6. Takashige, M., Hamazaki, S., Takahashi, Y., Shimizu, T., and Yamaguchi, T., Jpn.J. Appl. Phys., Part 1 38, 5686 (1999).Google Scholar
7. Cho, Y., Kirihara, A., and Saeki, T., Denshi Joho Tsushin Gakkai Ronbunshi 78–c–1, 593 (1995) (in Japanese).Google Scholar
8. Cho, Y., Kmhara, A., and Saeki, T., Rev.Sci.Instrum. 67, 2297(1996).Google Scholar
9. Cho, Y., Kazuta, S., and Matsuura, K., Appl.Phys.Lett. 75, 2833(1999).Google Scholar
10. Odagawa, H. and Cho, Y., Surf.Sci. 463 L621(2000).Google Scholar
11. Matsuura, K., Cho, Y. and Odagawa, H., Jpn.J.Appl.Phys., Part 1 40, 3534 (2001).Google Scholar
12. Odagawa, H. and Cho, Y., Appl.Phys.Lett., 80, 2159 (2002).Google Scholar
13. Cho, Y., Satoshi, K. and Ito, H., Appl.Phys.Lett., 79, 2955 (2001).Google Scholar