No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Synchrotron radiation excited soft x-ray emission and soft x-ray absorption spectroscopies are applied to the study of the electronic structure of InxGa1-xN alloys with (0 ≤ x ≤ 0.29). The elementally resolved partial density of states of the valence and conduction bands may be measured using these spectroscopies. The x-ray absorption spectra indicate that the conduction band broadens considerably with increasing indium incorporation. The band gap evolution as a function of indium content derives primarily from this broadening of the conduction band states. The emission spectra indicate that motion of the valence band makes a smaller contribution to the evolution of the band gap. This gap evolution differs from previous studies on the AlxGa1-xN alloy system, which observed a linear valence band shift through the series (0 < x < 1). Instead in the case of InxGa1-xN the valence band exhibits a significant shift between x = 0 and x = 0.1 with minimal movement thereafter. Furthermore, evidence of In 4d -N 2p and Ga 3d- N 2p hybridisation is reported. Finally, the thermal stability of an In011Ga089N film was investigated. Both emission and absorption spectra were found to have a temperature dependent shift in energy, but the overall definition of the spectra was unaltered even at annealing temperatures well beyond the growth temperature of the film.
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA