Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T07:42:51.910Z Has data issue: false hasContentIssue false

X-ray diffraction study of crystallite size-distribution and strain in carbon blacks

Published online by Cambridge University Press:  21 March 2011

T. Ungár
Affiliation:
Department of General Physics, Eötvös University Budapest, H-1518, P.O.B. 32 Budapest, Hungary
J. Gubicza
Affiliation:
Department of General Physics, Eötvös University Budapest, H-1518, P.O.B. 32 Budapest, Hungary
G. Ribárik
Affiliation:
Department of General Physics, Eötvös University Budapest, H-1518, P.O.B. 32 Budapest, Hungary
T. W. Zerda
Affiliation:
Department of Physics, Texas Christian University, Fort Worth, TX, U.S.A.
Get access

Abstract

The crystallite size and size-distribution in carbon blacks in the presence of strain are determined by recently developed procedure of X-ray diffraction peak profile analysis. The Fourier coefficients of the measured physical profiles are fitted by Fourier coefficients of well established ab initio functions of size and strain peak profiles. Strain anisotropy is accounted for by expressing the mean square strain in terms of average dislocation contrast factors. Crystallite shape anisotropy is modelled by ellipsoids incorporated into the size profile function. To make the fitting procedure faster, the Fourier transform of the size profile is given as an analitical function. The method is applied to carbon blacks treated at different preassures and temperatures. The microstructure is characterised in terms of crystallite size distribution, dislocation density, and crystallite shape anisotropy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Louër, D., Auffredic, J. P., Langford, J. I., Ciosmak, D. and Niepce, J. C., J. Appl. Cryst., 16, 183 (1983).Google Scholar
2. Stephens, P. W., J. Appl. Cryst. 32, 281 (1999).Google Scholar
3. Ungár, T. and Borbély, A., Appl. Phys. Lett. 69, 3173 (1996).Google Scholar
4. Ungár, T., Dragomir, I., Révész, Á. and Borbély, A., J. Appl. Cryst. 32, 992 (1999).Google Scholar
5. Langford, J. I., Louër, D. and Scardi, P., J. Appl. Cryst. 33, 964 (2000).Google Scholar
6. Wilkens, M., Fundamental Aspects of Dislocation Theory, ed. Simmons, J. A., deWit, R., Bullough, R., Vol. II. Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC. USA, p. 1195 (1970).Google Scholar
7. Zerda, T. W., Pantea, C., Qian, J., and Ungár, T., Proc. MRS Fall meeting, Symp: Filled and Nanocomposite Polymer Materials, eds. Hjelm, R. P., Nakatani, A. I., Gerspacher, M., Krishnamoorti, R., Boston, U.S.A. (2000).Google Scholar
8. Warren, B. E., Progr. Metal Phys. 8, 147 (1959).Google Scholar
9. Ribárik, G., Ungár, T. and Gubicza, J., J. Appl. Cryst. to be submitted.Google Scholar
10. Hinds, W. C., Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, Wiley, New York, (1982).Google Scholar
11. Krivoglaz, M. A., in Theory of X-ray and Thermal Neutron Scattering by real Crystals, Plenum Press, N. Y. 1969; and in X-ray and Neutron Diffraction in Nonideal Crystals, Springer-Verlag, Berlin Heidelberg New York, (1996).Google Scholar
12. Klimanek, P. and Kuzel, R. Jr, J. Appl. Cryst. 21, 59, 363 (1988); 22, 299 (1989).Google Scholar
13. Ungár, T. and Tichy, G., phys. stat. sol. (a) 171, 425 (1999).Google Scholar
14. Stokes, A. R., Proc. Phys. Soc. 61, 382 (1948).Google Scholar