Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T07:52:23.462Z Has data issue: false hasContentIssue false

Which Systems Can Undergo Inverse Melting?

Published online by Cambridge University Press:  15 February 2011

W. Sinkler
Affiliation:
C. Michaelsen
Affiliation:
Institute for Materials Research, GKSS Forschungszentrum 21502 Geesthacht, Germany,
R. Bormann
Affiliation:
Institute for Materials Research, GKSS Forschungszentrum 21502 Geesthacht, Germany,
Get access

Abstract

In the process of inverse melting, a crystalline solid solution on cooling becomes less energetically stable than the isocompositional undercooled liquid or amorphous phase. Due to this, the crystal may transform polymorphously to the amorphous or liquid phase. A thermodynamic requirement for this process is the presence of two crossing points of the free energy curves G(T) of the crystalline and liquid or amorphous phases. Fulfillment of the thermodynamic requirement is however not a sufficient criterion for inverse melting to occur. In the present work the question posed in the title is addressed from both a thermodynamic as well as a kinetic standpoint. It is shown that in bcc phases which would otherwise undergo inverse melting, the presence of an energetically favorable B2 phase may prevent inverse melting due to its fast ordering kinetics. This imposes an e/a limit to the occurrence of inverse melting.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yan, Z.H., Klassen, T., Michaelsen, M., Oehring, M., and Bormann, R., Phys. Rev. B 47, 8520 (1993).Google Scholar
2. Michaelsen, C., Oehring, M. and Bormann, R., Appl. Phys. Lett. 65, 318 (1994).Google Scholar
3. Michaelsen, C., Sinkler, W., Pfullmann, T. and Bormann, R., in preparation, 1995.Google Scholar
4. Greer, A.L., J. Less- Comm. Metals 140, 327 (1988).Google Scholar
5. Chen, H.S. and Turnbull, D., J. Chem. Phys. 48, 2560 (1968).Google Scholar
6. Bormann, R. and Zöltzer, K., phys. stat. sol 131, 691 (1992).Google Scholar
7. Sinkler, W. and Bormann, R., in preparation, 1995.Google Scholar
8. Michaelsen, C., in preparation, 1996.Google Scholar
9. Bormann, R., Mater. Sci. Engng. A 179/180, 31 (1994).Google Scholar
10. Zaluski, L., Tessier, P., Ryan, D.H., Doner, C.B., Zaluska, A., and Ström-Olsen, J.O., J. Mater. Res. 8, 3059 (1993).Google Scholar
11. Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).Google Scholar
12. Sinkler, W., Michaelsen, C., Bormann, R., Hannon, A., Spilsbury, D., and Cowlam, N., in preparation, 1995.Google Scholar
13. Rostoker, W., Trans AIME 203, 113 (1955).Google Scholar
14. Kumar, K.C.H., Wollants, P. and Delaey, L., CALPHAD 18, 223 (1994).Google Scholar
15. Yan, Z.H., Trudeau, M.L., Schulz, R., Bormann, R., Van Neste, A., and Ström-Olsen, J.O., in Mater. Res. Soc. Symp. Proc, Vol. 311, Atzmon, M., Greer, A.L., Harper, J.M.E., and Libera, M.R., Editors. MRS, Pittsburgh, PA. (1993).Google Scholar
16. Dwight, A.E. and Beck, P.A., Trans. TMS-AIME 245, 389 (1969).Google Scholar
17. Sinkler, W., Ph.D. Thesis, University of Pennsylvania, 1993.Google Scholar
18. Gente, C., Ph.D. Thesis, Technische Universität Hamburg-Harburg, 1996.Google Scholar
19. Oehring, M., unpublished results, 1993.Google Scholar
20. Ho, K.-M., Fu, C.-L. and Harmon, B.N., Phys. Rev. B 29, 1575 (1984).Google Scholar