Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T23:13:35.976Z Has data issue: false hasContentIssue false

What Can Lasers Do in the Nano-Fabrication of Carbon Nanotube Based Devices?

Published online by Cambridge University Press:  23 June 2011

Yun Shen Zhou
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, U.S.A.
Wei Xiong
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, U.S.A.
Masoud Mahjouri-Samani
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, U.S.A.
Yang Gao
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, U.S.A.
Matt Mitchell
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, U.S.A.
Yong Feng Lu
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, U.S.A.
Get access

Abstract

Numerous applications based on CNTs have been conceived and developed at laboratory scale. However, only a handful of applications have been successfully implemented due to the difficulties in controlled growth, manipulation, and integration of CNTs. In spite of countless efforts having been devoted into this field, high-performance-on-demand solution packages are still absent. In this study, we investigated applications of lasers in the controlled growth and integration of CNTs, and developed laser-based strategies to achieve nano-fabrication of CNTbased devices. By making use of unique features of lasers, we achieved 1) parallel integration of CNTs into pre-designed micro/nano-architectures in a single-step laser-assisted chemical vapor deposition (LCVD) process, 2) selective removal of metallic CNTs in open air, 3) growing CNTs of controlled-alignments, and 4) diameter modulation in individual CNTs. The laser-based strategies developed in this study suggest a laser-based solution-package to meet the challenges for the nano-fabrication of CNT-based devices and promises a reliable and scalable approach to achieve CNT-integrated devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avouris, P., Martel, R., Derycke, V. and Appenzeller, J., Physica B 323, 6 (2002).Google Scholar
2. Burghard, M., Klauk, H. and Kern, K., Advanced Materials 21, 2586 (2009).Google Scholar
3. Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C., Science 294, 1317 (2001).Google Scholar
4. Dai, H. J., Surface Science 500, 218 (2002).Google Scholar
5. Avouris, P. and Chen, J., Materials Today 9, 46 (2006).Google Scholar
6. Franklin, N. R., Wang, Q., Tombler, T.W., Javey, A., Shim, M. and Dai, H. J., Applied Physics Letters 81, 913 (2002).Google Scholar
7. Falvo, M. R., Clary, G. J., Taylor, R. M., Chi, V., Brooks, F. P., Washburn, S. and Superfine, R., Nature 389, 582 (1997).Google Scholar
8. Wei, Y. Y. and Eres, G., Nanotechnology 11, 61 (2000).Google Scholar
9. Keren, K., Berman, R. S., Buchstab, E., Sivan, U. and Braun, E., Science 302, 1380 (2003).Google Scholar
10. Li, J. Q., Zhang, Q., Peng, N. and Zhu, Q., Applied Physics Letters 86, 153116 (2005).Google Scholar
11. Krupke, R., Hennrich, F., Lohneysen, V. H. and Kappes, M. M., Science 301, 344 (2003).Google Scholar
12. Collins, P. G., Arnold, M. S. and Avouris, P., Science 292, 706 (2001).Google Scholar
13. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M. and Dai, H. J., Science 283, 512 (1999).Google Scholar
14. Liu, Y. T., Xie, X. M., Gao, Y. F., Feng, Q. P., Guo, L. R., Wang, X. H. and Ye, X. Y., Materials Letters 61, 334 (2007).Google Scholar
15. Huang, S. M., Woodson, M., Smalley, R. and Liu, J., Nano Letters 4, 1025 (2004).Google Scholar
16. Avigal, Y. and Kalish, R., Applied Physics Letters 78, 2291 (2001).Google Scholar
17. Nakayama, Y., Pan, L. J. and Takeda, G., Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Paper 45, 369 (2006).Google Scholar
18. Dresselhaus, M. S., Dresselhaus, G., Saito, R. and Jorio, A., Physics Reports-Review Section of Physics Letters 409, 47 (2005).Google Scholar
19. Souza, A. G., Chou, S. G., Samsonidze, G. G., Dresselhaus, G., Dresselhaus, M. S., An, L., Liu, J., Swan, A. K., Unlu, M. S., Goldberg, B. B., Jorio, A., Gruneis, A. and Saito, R., Physical Review B 69, 115428 (2004).Google Scholar
20. Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G. and Dresselhaus, M. S., Physical Review Letters 86, 1118 (2001).Google Scholar
21. Saito, R., Jorio, A., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G. and Dresselhaus, M. S., Physical Review B 64, 085312 (2001).Google Scholar
22. Brown, S. D. M., Jorio, A. and Corio, P., Physical Review B 63, 155414 (2001).Google Scholar
23. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y., Synthetic Metals 103, 2555 (1999).Google Scholar
24. Hayazawa, N., Yano, T., Watanabe, H., Inouye, Y. and Kawata, S., Chemical Physics Letters 376, 174 (2003).Google Scholar
25. Novotny, L., Bian, R. X. and Xie, X. S., Physical Review Letters 79, 645 (1997).Google Scholar
26. Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Ünlü, M. S, Goldberg, B. B., Pimenta, M. A., Hafner, J. H., Lieber, C. M. and Saito, R., Physical Review B 65, 155412 (2002).Google Scholar
27. Zhou, G., Duan, W. and Gu, B., Physics Review Letters 87, 095504 (2001).Google Scholar