Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:38:45.732Z Has data issue: false hasContentIssue false

Wafer Scale Nanopatterning and Nanomaterials Synthesis of Functional Nano Probes for Atomic Force Microscopy

Published online by Cambridge University Press:  15 February 2011

Qi Laura Ye*
Affiliation:
Center For Nanotechnology, NASA Ames Research Center, Moffett Field, CA 94035, USA
Alan M. Cassell
Affiliation:
Center For Nanotechnology, NASA Ames Research Center, Moffett Field, CA 94035, USA
Hongbing Liu
Affiliation:
Center For Nanotechnology, NASA Ames Research Center, Moffett Field, CA 94035, USA
M. Meyyappan
Affiliation:
Center For Nanotechnology, NASA Ames Research Center, Moffett Field, CA 94035, USA
*
*Corresponding author: e-mail: [email protected], phone: (650) 604-0497, fax: (650) 604-0987
Get access

Abstract

The key hurdle in nanoscience and nanotechnology is the large-scale integration of nanoscale materials with micron scale electronics and structures to form functional devices and sensors. We have developed an innovative bottom-up wafer scale fabrication method that combines nanopatterning and nanomaterials synthesis with traditional silicon micromachining technologies. We have achieved nano-micro integration through catalyst nanopatterning and registration at wafer scale and through effective nanocatalyst protection and release before and after microfabrication. Our wafer scale fabrication process has produced 244 carbon nanotube (CNT) probes per 4-inch silicon wafer with control over the CNT location, diameter, length, orientation, and crystalline morphology. CNT probes with diameters of 40-80 nm and lengths of 2-6 μm are found to be functional nano probes for atomic force microscopy (AFM) imaging. In this paper, we will address our nano probe design and fabrication considerations in detail. CNT tip locations and diameters are defined by e-beam lithography. CNT length, orientation, and crystalline quality are controlled by the plasma enhanced chemical vapor deposition (PECVD) method. With effective catalyst protection schemes, this fabrication process is very similar to the conventional approach for fabricating wafer-scale silicon AFM probe tips. Process control is feasible and the overall yield is greatly improved. Our method and technology can be easily adapted to many other nanomaterials (nanotubes and nanowires) synthesis and processes for their rational design, fabrication, and integration in their applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph. (Eds.). Carbon Nanotubes, Topics Appl. Phys. 2001, 80, Springer.Google Scholar
2. Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; and Smalley, R. E. Nature 1996, 384, 147.Google Scholar
3. Nguyen, C. V.; Chao, K.; Stevens, R. M.; Delzeit, L.; Cassell, A.; Han, J.; and Meyyappan, M. Nanotech. 2001, 12, 363.Google Scholar
4. Nguyen, C. V.; So, C.; Stevens, R. M.; Li, Y.; Delzeit, L.; Sarrazin, P.; and Meyyappan, M. J. Phys. Chem. B 2004, 108, 2816.Google Scholar
5. Nguyen, C. V.; Stevens, R. M. D.; Barber, J.; Han, J.; and Meyyappan, M. App. Phys. Lett. 2002, 81, 901.Google Scholar
6. Wong, S. S.; Harper, J. D.; Lansbury, P. T. Jr; and Lieber, C. M. J. Am. Chem. Soc. 1998, 120, 603.Google Scholar
7. Nishijima, H.; Kamo, S.; Akita, S.; and Nakayama, Y. App. Phys. Lett. 1999, 74, 4061.Google Scholar
8. Stevens, R. M.; Nguyen, C. V.; and Meyyappan, M. IEEE Trans. on Nanobioscience 2004, 3, 56.Google Scholar
9. Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; and Lieber, C. M. Nature 1998, 394, 52.Google Scholar
10. Wong, S. S.; Woolley, A. T.; Joselevich, E.; Cheung, C. L.; and Lieber, C. M. J. Am. Chem. Soc. 1998, 120, 8557.Google Scholar
11. Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; and Han, J. App. Phys. Lett. 2000, 77, 3453.Google Scholar
12. Hafner, J. H.; Cheung, C. L.; and Lieber, C. M. Nature 1999, 398, 761.Google Scholar
13. Hafner, J. H.; Cheung, C. L.; and Lieber, C. M. J. Am. Chem. Soc. 1999, 121, 9750.Google Scholar
14. Cheung, C. L.; Hafner, J. H.; and Lieber, C. M. PNAS 2000, 97, 3809.Google Scholar
15. Franklin, N. R.; Li, Y.; Chen, R. J.; Javey, A.; and Dai, H. App. Phys. Lett. 2001, 79, 4571.Google Scholar
16. Yenilmez, E.; Wang, Q.; Chen, R. J.; Wang, D.; and Dai, H. App. Phys. Lett. 2002, 80, 2225.Google Scholar
17. Cassell, A. M.; Ye, Q.; Cruden, B. A.; Li, J.; Sarrazin, P. C.; Ng, H. T.; Han, J.; and Meyyappan, M. Nanotech. 2004, 15, 9.Google Scholar
18. Cassell, A. M.; Ng, H. T.; Delzeit, L.; Ye, Q.; Li, J.; Han, J.; and Meyyappan, M. Appl. Cat. A: General 2003, 254, 85.Google Scholar
19. Lee, S. I.; Howell, S. W.; Raman, A.; Reifenberger, R.; Nguyen, C. V.; and Meyyappan, M. Nanotech. 2004, 15, 416.Google Scholar
20. Yu, M. F.; Kowalewski, T.; and Ruoff, R. S. Phys. Rev. Lett. 2000, 85, 1456.Google Scholar
21. Hertel, T.; Martel, R.; and Avouris, P. J. Phys. Chem. B 1998, 102, 910.Google Scholar
22. Ruoff, R. S.; Qian, D.; and Liu, W. K. C. R. Physique, 2003, 4, 993.Google Scholar