Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T22:13:55.809Z Has data issue: false hasContentIssue false

W2B based High Thermal Stability Ohmic Contacts to n-GaN

Published online by Cambridge University Press:  01 February 2011

Rohit Khanna
Affiliation:
[email protected], University of Florida, 1111 SW, 16th Avenue, Apt#1, Gainesville, Florida, 32601, United States
S J Pearton
Affiliation:
[email protected], University of Florida, Department of Materials Science and Engineering
C J Kao
Affiliation:
[email protected], National Central University, Department of Electrical Engineering, Taiwan
I I Kravchenko
Affiliation:
[email protected], University of Florida, Department of Chemical Engineering, United States
F Ren
Affiliation:
[email protected], University of Florida, Department of Chemical Engineering, United States
G C Chi
Affiliation:
[email protected], National Central University, Department of Electrical Engineering, Taiwan
A Dabiran
Affiliation:
[email protected], SVT Associates, Eden Prairie, MN, United States
A Osinsky
Affiliation:
[email protected], SVT Associates, Eden Prairie, MN, United States
Get access

Abstract

A novel metallization scheme for Ohmic contact (Ti/Al/ W2B /Ti/Au) to n-GaN using high temperature boride was studied using contact resistance, scanning electron microscopy and Auger Electron Spectroscopy measurements. A minimum contact resistance of 7×10-6 Ω.cm2 was achieved for W2B based scheme at an annealing temperature of 800 °C. Contact resistances were found to be essentially independent of measurement temperature, indicating that tunneling plays a dominant role in the current transport. The outdiffusion of Ti to the surface at temperatures of ∼500°C, and at 800°C the onset of intermixing of Al within the contact was found to occur. By 1000°C, the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization. The reliability measurements for the contact resistance of W2B based contact showed excellent stability for extended periods at 200°C, which simulates the type of device operating temperature that might be expected for operation of GaN-based power electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sun, J., Fatima, H., Koudymov, A., Chitnis, A., Hu, X., Wang, H.-M., Zhang, J., Simin, G., Yang, J., and Khan, M.A., IEEE Electron Dev. Lett., 24, 375 (2003).CrossRefGoogle Scholar
2. Zhang, A.P., Rowland, L.B., Kaminsky, E.B., Kretchmer, J.W., Beaupre, R.A., Garrett, J.L., Tucker, J.B., Edward, B.J., Foppes, J. and Allen, A.F., Solid-State Electron., 47 821(2003).CrossRefGoogle Scholar
3. Zhang, A.P., Rowland, L.B., Kaminsky, E.B., Tilak, V., Grande, J.C., Teetsov, J., Vertiatchikh, A. and Eastman, L.F., J. Electron. Mater, 32 388(2003).CrossRefGoogle Scholar
4. Kumar, V., Zhou, L., Selvanathan, D., and Adesida, I., J. Appl. Phys., 92, 1712 (2002)CrossRefGoogle Scholar
5. Motayed, Abhishek, Bathe, Ravi, Wood, Mark C., Diouf, Ousmane S., Vispute, R. D., and Noor Mohammad, S., J. Appl. Phys., 93, 1087 (2003)CrossRefGoogle Scholar
6. Burm, Jinwook, Chu, Kenneth, Davis, William A., Schaff, William J., Eastman, Lester F., and Eustis, Tyler J., Appl. Phys. Lett., 70, 464 (1997)CrossRefGoogle Scholar
7. Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H., and Morkoç, H., Appl. Phys. Lett., 64, 1003 (1994).CrossRefGoogle Scholar
8. Luther, B. P., Mohney, S. E., Jackson, T. N., Asif Khan, M., Chen, Q., and Yang, J. W., Appl. Phys. Lett., 70, 57 (1997).CrossRefGoogle Scholar
9. Fan, Zhifang, Noor Mohammad, S., Kim, Wook, Aktas, Özgür, Botchkarev, Andrei E., and Morkoç, Hadis, Appl. Phys. Lett., 68, 1672 (1996)CrossRefGoogle Scholar
10. Ruvimov, S., Liliental-Weber, Z., Washburn, J., Qiao, D., Lau, S. S., and Chu, Paul K., Appl. Phys. Lett., 73, 2582 (1998).CrossRefGoogle Scholar
11. Bright, A. N., Thomas, P. J., Weyland, M., Tricker, D. M., Humphreys, C. J., and Davies, R., J. Appl. Phys., 89, 3143 (2001).CrossRefGoogle Scholar
12. Papanicolaou, N. A., Rao, M. V., Mittereder, J., and Anderson, W. T., J. Vac. Sci. Technol. B, 19, 261 (2001).CrossRefGoogle Scholar
13. Liu, Q. Z. and Lau, S. S., Solid-State Electronics, 42, 677691 (1998).CrossRefGoogle Scholar
14. Li, R., Cai, S. J., Wong, L., Chen, Y., Wang, K. L., Smith, R. P., Martin, S. C., Boutros, K. S., Redwing, J. M., IEEE Electron Device Letters, 20, 323 (1999).CrossRefGoogle Scholar
15. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T., Jenkins, T. J., IEEE Electron Device Letters, 20, 161 -163 (1999).CrossRefGoogle Scholar
16. Qiao, D., Guan, Z. F., Carlton, J., Lau, S. S., and Sullivan, G. J., Appl. Phys. Lett., 74, 2652 (1999)CrossRefGoogle Scholar
17. Tilak, V., Dimitov, R., Murphy, M., Green, B., Smart, J., Schaft, W. J., Shealy, J. R. and Eastman, L. F., Mat. Res. Soc. Symp. Proc., 622, T7.4.1 (2000).CrossRefGoogle Scholar
18. Lim, S.-H., Washburn, J., Liliental-Weber, Z., and Qiao, D., Appl. Phys. Lett., 78, 3797 (2001).CrossRefGoogle Scholar
19. Asif Khan, M., Shur, M. S. and Chen, Q., Appl. Phys. Lett., 68, 3022(1996).CrossRefGoogle Scholar
20. Murai, S., Masuda, H., Koide, Y., and Masanori Murakami, Appl. Phys. Lett., 80, 2934 (2002)CrossRefGoogle Scholar
21. Lu, Changzhi, Chen, Hongnai, Lv, Xiaoliang, Xie, Xuesong, and Noor Mohammad, S., J. Appl. Phys., 91, 9218 (2002)CrossRefGoogle Scholar
22. Foresi, J. S. and Moustakus, T. D., Appl. Phys. Lett., 62, 2859(1993).CrossRefGoogle Scholar
23. Fay, M. W., Moldovan, G., Brown, P. D., Harrison, I., Birbeck, J. C., Hughes, B. T., Uren, M. J., and Martin, T., J. Appl. Phys., 92, 94 (2002).CrossRefGoogle Scholar
24. Schweitz, K. O., Wang, P. K., Mohney, S. E., and Gotthold, D., Appl. Phys. Lett., 80, 1954 (2002).CrossRefGoogle Scholar
25. Cole, M. W., Eckart, D. W., Han, W. Y., Pfeffer, R. L., Monahan, T., Ren, F., Yuan, C., Stall, R. A., Pearton, S. J., Li, Y. and Lu, Y., J. Appl. Phys., 80, 278 (1996).CrossRefGoogle Scholar
26. Zeitouny, A., Eizenberg, M., Pearton, S. J., and Ren, F., J. Appl. Phys., 88, 2048 (2000).CrossRefGoogle Scholar
27. Selvanathan, D., Mohammed, F.M., Tesfayesus, A. and Adesida, I., J. Vac. Sci. Technol., B22 2409(2004).CrossRefGoogle Scholar
28. Luo, B., Ren, F., Fitch, R.C., Gillespie, J.K., Jenkins, T., Sewell, J., Via, D., Crespo, A., Baca, A.G., Briggs, R.D., Gotthold, D., Birkhahn, R., Peres, B. and Pearton, S.J., Appl. Phys. Lett., 82, 3910 (2003).CrossRefGoogle Scholar
29. Jang, H.W. and Lee, J.-L., J. Appl. Phys., 93, 5416(2003).CrossRefGoogle Scholar
30. Fitch, R.C., Gillespie, J.K., Moser, N., Jenkins, T., Sewell, J., Via, D., Crespo, A., Dabiran, A.M., Chow, P.P., Osinsky, A., LaRoche, J.R., Ren, F. and Pearton, S.J., Appl. Phys. Lett., 84, 1495 (2004).CrossRefGoogle Scholar
31. Fitch, R.C., Gillespie, J.K., Moser, N., Jenkins, T., Sewell, J., Via, D., Crespo, A., Dabiran, A.M., Chow, P.P., Osinsky, A., LaRoche, J.R., Ren, F. and Pearton, S.J., J. Vac. Sci. Technol., B22, 619(2004).CrossRefGoogle Scholar
32. Selvanathan, D., Zhou, L., Kumar, V., Adesida, I. and Finnegan, N., J. Electron. Mater., 32 335(2003).CrossRefGoogle Scholar
33. Cao, X. A., Pearton, S. J., Dang, G., Zhang, A. P., Ren, F., and Van Hove, J. M., Appl. Phys. Lett., 75, 4130 (1999).CrossRefGoogle Scholar
34. Padovani, F.A. and Stratton, R., Solid-State Electron., 9 695 (1966).CrossRefGoogle Scholar
35. Cole, M. W., Ren, F., and Pearton, S. J., J. Electrochem. Soc. 144, L275 (1997).CrossRefGoogle Scholar