Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T05:04:47.124Z Has data issue: false hasContentIssue false

Vortex Dynamics and Dissipation in High Temperature Superconductors — from DC to Microwave Frequencies

Published online by Cambridge University Press:  26 February 2011

N.-C. Yeh
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
W. Jiang
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
D. S. Reed
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
U. Kriplani
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
F. Holtzberg
Affiliation:
IBM, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
A. Gupta
Affiliation:
IBM, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
A. Kussmaul
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 01239
Get access

Abstract

A second-order vortex-solid melting transition in twinned Y-Ba-Cu-O single crystals is manifested by two independent types of electrical transport measurements: the electric field (E) versus current density (J) isotherms, and the ac resistivity (ρ) vs current frequency (ω) isotherms. Universal static and dynamic exponents (ν ≈ 2/3 and Ζ ≈ 3, respectively) are found for magnetic fields ranging from 1 to 90 kOe, frequencies ranging from 0 to 2 MHz, magnetic directions parallel and perpendicular to the crystal c-axis, as well as samples with and without proton irradiations. At microwave frequencies, we find that the vortex dissipation in Nd-Ce-Cu-O epitaxial films is consistent with the viscous motion of individual vortices, due to the break down of the critical scaling theory in the high frequency limit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nelson, D. R. and Seung, H. S., Phys. Rev. B39, 9153 (1989).Google Scholar
[2] Marchetti, M. C. and Nelson, D. R., Phys. Rev. B41, 1910 (1990).Google Scholar
[3] Fisher, D. S., Fisher, M. P. A., and Huse, D., Phys. Rev. B43, (1991);Google Scholar
Fisher, M. P. A., Phys. Rev. Lett. 62, 1415 (1988).Google Scholar
[4] Brandt, E. H., Phys. Rev. Lett. 63, 1106 (1989).Google Scholar
[5] Houghton, A., Pelcovits, R. A., and Sudbø, A., Phys. Rev. B40, 6763 (1989).Google Scholar
[6] Yeh, N. -C., Phys. Rev. B42, 4850 (1990).Google Scholar
[7] Koch, R., Foglietti, V., Gallagher, W. J., Koren, G., Gupta, A., and Fisher, M. P. A., Phys. Rev. Lett. 63, 1511 (1989).Google Scholar
[8] Gammel, P. L., Schneemeyer, L. F. and Bishop, D. J., Phys. Rev. Lett. 66, 953 (1991).Google Scholar
[9] Yeh, N. -C., Reed, D. S., Jiang, W., Kriplani, U., Holtzberg, F., Gupta, A., Hunt, B. D., Vasquez, R. P., Foote, M. C., and Bajuk, L., Phys. Rev. B45, 5654 (1992).Google Scholar
[10] Yeh, N. -C., Jiang, W., Reed, D. S., Gupta, A., Holtzberg, F., and Kussumal, A., Phys. Rev. B45, 5710 (1992).Google Scholar
[11] Farrellet, D. et al., Phys. Rev. Lett. 67, 1165 (1991); Beck et al., Phys. Rev. Lett. 68, (1992).Google Scholar
[12] Dorsey, A. T., Phys. Rev. B43, 7575 (1991).Google Scholar
[13] Brandt, E. H., International J. Mod. Phys. B5, 751 (1992); Physica C162, 1167 (1989).Google Scholar
[14] Zeldov, E. et al., Phys. Rev. Lett. 62, 3093 (1989);Google Scholar
Coppersmith, S. N. et al., Phys. Rev. Lett. 64, 2585 (1990).Google Scholar
[15] Yeh, N. -C., Phys. Rev. B40, 4566 (1989).Google Scholar
[16] Yeh, N. -C., Phys. Rev. B43, 523 (1991).Google Scholar
[17] Brandt, E. H., Phys. Rev. Lett. 67, 2219 (1991).Google Scholar
[18] Coffey, M. W. and Clem, J. R., Phys. Rev. Lett. 67, 386 (1991).Google Scholar
[19] Yeh, N. -C., Jiang, W., Reed, D. S., Kriplani, U. and Holzberg, F., submitted to Phys. Rev. Lett. (April, 1992).Google Scholar
[20] Reed, D. S., Yeh, N. -C., Jiang, W., Kriplani, U. and Holzberg, F., submitted to Phys. Rev. Lett. (April, 1992); Mat. Res. Soc. Sym. Proc, Spring Meeting (1992).Google Scholar
[21] Jiang, W., Yeh, N. -C., Reed, D. S., Kriplani, U., Rice, A. P., Tombrello, T., and Holzberg, F., MRS Proceedings, Spring Meeting (1992).Google Scholar
[22] Kriplani, U., Yeh, N. -C., Jiang, W., Reed, D. S., Gupta, A., and Kussmaul, A., Mat. Res. Soc. Sym. Proc. Spring Meeting (1992);Google Scholar
Yeh, N. -C., Kriplani, U., Jiang, W., Reed, D. S., Gupta, A., and Kussmaul, A., submitted to Phys. Rev. Lett.Google Scholar
[23] For example, it is reasonable to postulate pinned vortex-liquid after the vortex-solid melting transition.Google Scholar
[24] Hohenberg, P. C. and Halperin, B. I., Rev. Mod. Phys. 49, 435 (1977).Google Scholar
[25] Dorsey, A. T., Huang, M. and Fisher, M. P. A., Phys. Rev. B45, 523 (1992).Google Scholar
[26] Wu, D. -H. and Sridhar, S., Phys. Rev. Lett. 65, 2074 (1990).Google Scholar