Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T03:24:34.094Z Has data issue: false hasContentIssue false

Vibrational Dynamics of the OH Stretching Mode of Water in Reverse Micelles Studied by Infrared Nonlinear Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Hiroaki Maekawa
Affiliation:
Graduate School of Science and Technology, Kobe University, Kobe, Japan
Kaoru Ohta
Affiliation:
Molecular Photoscience Research Center, Kobe University, Kobe, Japan
Keisuke Tominaga
Affiliation:
Graduate School of Science and Technology, Kobe University, Kobe, Japan Molecular Photoscience Research Center, Kobe University, Kobe, Japan CREST/JST, Kobe, Japan
Get access

Abstract

Vibrational dynamics of the OH stretching mode of water in the water pool of reverse micelles (H2O/Aerosol OT (AOT)/isooctane) are studied by nonlinear infrared spectroscopy such as transient grating method and three-pulse photon echo peak shift measurements. The W0 value (W0 =[H2O]/[AOT]) is changed from 2 to 40, which corresponds to a water pool diameter of a few nm to about 20 nm. Polarization dependent transient grating experiments show rapid anisotropy decay of the OH stretching mode, which could be due to resonant intra and intermolecular energy transfer. From the three-pulse photon echo peak shift experiments, the spectral diffusion is found to be dependent on W0.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hazra, P., Chakrabarty, D. and Sarkar, N., Chem. Phys. Lett. 371, 553 (2003).Google Scholar
2. Riter, R. E., Willard, D. M. and Levinger, N. E., J. Phys. Chem. B 102, 2705 (1998).Google Scholar
3. Hazra, P., Chakrabarty, D. and Sarkar, N., Chem. Phys. Lett. 358, 523 (2002).Google Scholar
4. Levinger, N. E., Curr. Opin. Collid Interface Sci. 5, 118 (2000).Google Scholar
5. Pal, S. K., Mandal, D., Sukul, D. and Bhattacharyya, K., Chem. Phys. Lett. 312, 178 (1999).Google Scholar
6. Datta, A., Mandal, D., Pal, S. K. and Bhattacharrya, K., Chem. Phys. Lett. 1997, 77 (278).Google Scholar
7. Datta, A., Mandal, D., Pal, S. K. and Bhattacharyya, K., J. Phys. Chem. B 101, 10221 (1997).Google Scholar
8. Hazra, P. and Sarkar, N., Chem. Phys. Lett. 342, 303 (2001).Google Scholar
9. Zhong, Q., Baronavski, A. P. and Owrntsky, J. C., J. Chem. Phys. 119, 9171 (2003).Google Scholar
10. Zhong, Q., Baronavski, A. P. and Owrutsky, J. C., J. Chem. Phys. 118, 7074 (2003).Google Scholar
11. Zulauf, M. and Eicke, H.-F., J. Phys. Chem. 83, 480 (1979).Google Scholar
12. Bohidar, H. B. and Behboudnia, M., Colloids Sufr., A 178, 313 (2001).Google Scholar
13. Robinson, B. H., Toprakcioglu, C. and Dore, J. C., J. Chem. Soc., Faraday Trans. I 80, 13 (1984).Google Scholar
14. Kotlarchyk, M. and Chen, S.-H., Phys. Rev. A 29, 2054 (1984).Google Scholar
15. Lang, J., Jada, A. and Malliaris, A., J. Phys. Chem. 92, 1946 (1988).Google Scholar
16. Gehlen, M. H. and De Schryver, F. C., Chem. Rev. 93, 199 (1993).Google Scholar
17. Nandi, N., Bhattacharyya, K. and Bagchi, B., Chem. Rev. 100, 2013 (2000).Google Scholar
18. Woutersen, S. and Bakker, H. J., Nature 402, 507 (1999).Google Scholar
19. Omta, A. W., Kropman, M. F., Woutersen, S. and Bakker, H. J., Science 301, 347 (2003).Google Scholar
20. Woutersen, S., Emmerichs, U., Nienhuys, H. K. and Bakker, H. J., Phys. Rev. Lett. 81, 1106 (1998).Google Scholar
21. Laenen, R., Simeonidis, K. and Laubereau, A., J. Phys. Chem. B 106, 408 (2002).Google Scholar
22. Laenen, R., Rauscher, C. and Laubereau, A., Phys. Rev. Lett. 80, 2622 (1998).Google Scholar
23. Gale, G. M., Gallot, G., Hache, F. and Lascoux, N., Phys. Rev. Lett. 82, 1068 (1999).Google Scholar
24. Fecko, C. J., Eaves, J. D., Loparo, J. J., Tokmakoff, A. and Geissler, P. L., Science 301, 1698 (2003).Google Scholar
25. Stenger, J., Madsen, D., Hamm, P., Nibbering, E. T. J. and Elsaesser, T., J. Phys. Chem. A 106, 2341 (2002).Google Scholar
26. Maekawa, H., Tominaga, K. and Podenas, D., Jpn. J. Appl. Phys. 41, 329 (2002).Google Scholar
27. Seifert, G., Patzlaff, T. and Graner, H., Phys. Rev. Lett. 88, 147402 (2002).Google Scholar
28. Jeffrey, G. A., An Introduction to Hydrogen Bonding (Oxford University Press, New York, Oxford, 19971).Google Scholar
29. Patzlaff, T., Janich, M., Seifert, G. and Graener, H., Chem. Phys. 261, 381 (2000).Google Scholar
30. Graener, H., Seifert, G. and Laubereau, A., Chem. Phys. Lett. 172, 435 (1990).Google Scholar
31. Lide, D. R. et al., CRC Handbook of Chemistry and Physics 83rd Edition (CRC Press, Boca Laton, FL, 2002).Google Scholar
32. Rey, R., Moller, K. B. and Hynes, J. T., J. Phys. Chem. A 106, 11993 (2002).Google Scholar
33. Piryatinski, A., Lawrence, C. P. and Skinner, J. L., J. Chem. Phys. 118, 9672 (2003).Google Scholar
34. Yeremenko, S., Pshenichnikov, M. S. and Wiersma, D. A., Chem. Phys. Lett. 369, 107 (2003).Google Scholar