Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:36:54.677Z Has data issue: false hasContentIssue false

Vertically Aligned Mn-doped Fe3O4 Nanowire Arrays: Magnetic Properties and Gas Sensing at Room Temperature

Published online by Cambridge University Press:  26 February 2011

Seon Oh Hwang
Affiliation:
[email protected], Korea University, Department of Materials Chemistry, Jochiwon, 339-700, Korea, Republic of
Chang Hyun Kim
Affiliation:
[email protected], Korea University, Department of Materials Chemistry, Jochiwon, 339-700, Korea, Republic of
Yoon Myung
Affiliation:
[email protected], Korea University, Department of Materials Chemistry, Jochiwon, 339-700, Korea, Republic of
Seong-Hun Park
Affiliation:
[email protected], Korea University, Department of Materials Chemistry, Jochiwon, 339-700, Korea, Republic of
Jeunghee Park
Affiliation:
[email protected], Korea University, Department of Materials Chemistry, Jochiwon, 339-700, Korea, Republic of
Chang Soo Hahn
Affiliation:
[email protected], Korea Institute of Machinery and Materials, Nano-Mechanical Systems Research Center, Daejeon, 305-343, Korea, Republic of
Jae-Young Kim
Affiliation:
[email protected], POSTECH, Pohang Accelerator Laboratory, Pohang, 790 - 784, Korea, Republic of
Get access

Abstract

Vertically-aligned Mn (10%)-doped Fe3O4 (Fe2.7Mn0.3O4) nanowire arrays were produced by the reduction/substitution of pre-grown Fe2O3 nanowires. These nanowires were ferromagnetic with a Verwey temperature of 129 K. X-ray magnetic circular dichroism measurements revealed that the Mn2+ ions preferentially occupy the tetrahedral sites, substituting for the Fe3+ ions. We observed that the Mn substitution decreases the magnetization, but increases the electrical conductivity. We developed highly sensitive gas sensors using these nanowire arrays, operating at room temperature, whose sensitivity showed a correlation with their bond strength of diatomic/triatomic molecules. Based on the fact that the sensitivity was highest toward water vapor, an excellent-performance humidity sensor was fabricated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 1999, 32, 435. (b) M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature (London) 2002, 415, 617. (c) X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature (London) 2003, 421, 241.10.1021/ar9700365Google Scholar
2. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Molnár, S. von, Roukes, M. L., Chtchelkanova, A. Y., Treger, D. M., Science 2001, 294, 1488.Google Scholar
3. Ishikawa, M., Tanaka, H., Kawai, T., Appl. Phys. Lett. 2006, 86, 222504.10.1063/1.1942640Google Scholar
4.a) Tripathy, D., Adeyeye, A. O., Boothroyd, C. B., Piramanayagam, S. N., J. Appl. Phys. 2007, 101, 013904. b) M. -S. Lee, T. –Y. Kim, C. -S. Lee, J. –C. Park, Y. I. Kim, D. Kim, J. Magn. Magn. Mater. 2004, 268, 62.10.1063/1.2404469Google Scholar
5. Kim, C. H., Chun, H. J., Kim, D. S., Kim, S. Y., Park, J., Moon, J. Y., Lee, G., Yoon, J., Jo, Y., –H. Jung, M., Jung, S. I., Lee, C. J., Appl. Phys. Lett. 2006, 89, 223103.10.1063/1.2393165Google Scholar
6.a) Verwey, E. J. W., Heilmann, E. L., J. Chem. Phys. 1947, 15, 174. b) J. M. Hastings, L. M. Corliss, Phys. Rev. 1956, 104, 328. c) S. Suga, S. Imada, J. Electron Spectrosc. Relat. Phemon. 1998, 92, 1. d) V. N. Antonov, B. N. Harmon, A. N. Yaresko, Phys. Rev. B 2003, 67, 024417. e) E. Kravtsov, D. Haskel, A. Cady, A. Yang, C. Vittoria, X. Zuo, V. G. Harris, Phys. Rev. B 2006,74, 104114. f) Z. Szotek, W. M. Temmerman, D. Ködderitzsch, A. Svane, L. Petit, H. Winter, Phys. Rev. B 2006, 74, 174431. g) C. I. Pearce, C. M. B. Henderson, R. A. D. Pattrick, G. van der Laan, D. J. Vaughan, Am. Miner. 2006, 91, 880.10.1063/1.1746464Google Scholar
7. Ishikawa, M., Tanaka, H., Kawai, T., Appl. Phys. Lett. 2006, 86, 222504.10.1063/1.1942640Google Scholar
8. Štichauer, L., Mirone, A., Turchini, S., Prosperi, T., Zennaro, S., Zema, N., Lama, F., Pontin, R., Šimša, Z., Tailhades, Ph., Bonningue, C., J. Appl. Phys. 2001, 90, 2511.10.1063/1.1389519Google Scholar