Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T00:24:03.631Z Has data issue: false hasContentIssue false

Valence Band Parameters for Wurtzite GaN and InN

Published online by Cambridge University Press:  10 February 2011

Y. C. Yeo
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, S 119260, Singapore
T. C. Chong
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, S 119260, Singapore
M. F. Li
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, S 119260, Singapore
Get access

Abstract

Theoretical studies and design of quantum well lasers employing InGaN require material parameters for both GaN and InN. However, the Luttinger-like effective-mass parameters for InN are currently unavailable. In this work, we extract effective-mass parameters for wurtzite GaN and InN from their electronic band structures calculated using the Empirical Pseudopotential Method (EPM). We obtain the electron and hole (including the heavy- (HH), light- (LH), and crystal-field split-off (CH) holes) effective-masses at the Γ point in the kz and the in-plane kx-ky plane) directions using a parabolic fit. In addition, the hole effective-mass parameters are derived using the 6×6 effective-mass Hamiltonian and the k.p method. Our results will be useful for material design in wide-gap nitride-based semiconductor lasers containing InGaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys. 36, pp. L1059 (1997).Google Scholar
2. Akasaki, I., Amano, H., Sota, S., Sakai, H., Tanaka, T., and Kaike, M., Jpn. J. Appl. Phys. 34, pp. L1517 (1995).Google Scholar
3. Rubio, A., Corkill, J. L., Cohen, M. L., Shirley, E. L., and Louie, S. G., Phys. Rev. B 48, pp. 11810 (1993).Google Scholar
4. Huang, M. Z. and Ching, W. Y., J. Phys. Chem. Solids 46, pp. 977 (1985).Google Scholar
5. Gorczya, I. and Christensen, N. E., Solid State Commun. 80, pp. 335 (1991).Google Scholar
6. Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, pp. 8132 (1995); M. Suzuki, and T. Uenoyama, Jpn. J. Appl. Phys. 34, pp. 3442 (1995).Google Scholar
7. Larnbrecht, W. R. L. and Segall, B., Properties of Group III Nitrides, ed., Edgar, J. E., London: INSPEC, IEE, pp. 141156 (1994).Google Scholar
8. Wei, S. H. and Zunger, A., Appl. Phys. Lett. 69, pp. 2719 (1996); and private communication.Google Scholar
9. Majewski, J. A., Städele, M., and Vogl, P., Materials Research Society Internet J. Nitride Semicond. Research 1, 30 (1996).Google Scholar
10. Xu, Y. N. and Ching, W. Y., Phys. Rev. B 48, pp. 4335 (1993).Google Scholar
11. Christensen, N. E. and Gorczyca, I., Phys. Rev. B 50, pp. 4397 (1994).Google Scholar
12. Tsai, M. H., Jenkins, D. W., and Dow, J. D., Phys. Rev. B 38, pp. 15411543 (1988).10.1103/PhysRevB.38.1541Google Scholar
13. Bloom, S., Harbeke, G., Meier, E., and Ortenburger, I. B., Phys. Stat. Sol. (b) 66, pp. 161 (1974).Google Scholar
14. Bloom, S., J. Phys. Chem. Solids 32, pp. 2027 (1971).Google Scholar
15. Grinyaev, S. N., Malakhov, V.Ya, and Chaldyshev, V. A., Soy. Phys. J. 29, pp. 311 (1986).Google Scholar
16. Foley, C. P. and Tansley, T. L., Phys. Rev. B 33, pp. 1430 (1986).Google Scholar
17. Jenkins, D. W., Hong, J. -D., and Dow, J. D., Superlattices Microstruct. 3, pp. 365 (1987).Google Scholar
18. Cohen, M. L. and Bergstresser, T. K., Phys. Rev. 141, pp. 789 (1966); M. L.Cohen and V.Heine, Solid State Physics, vol 24, ed. H. Ehrenreich, F.Seitz, and D. Turnbull (Academic Press, 1970); M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (Springer-Verlag, 1989).Google Scholar
19. Löwdin, P., J. Chem. Phys. 19, pp. 1396 (1951).Google Scholar
20. Yeo, Y. C., Chong, T. C., and Li, M. F., accepted for publication in the J. Appl. Phys. (1998).Google Scholar
21. Davis, R. F., Proceedings of the IEEE 79, pp. 702 (1991).Google Scholar
22. Wright, A. F. and Nelson, J. S., Phys. Rev. B 50, pp. 2159 (1994); Phys. Rev. B 51, pp. 7866 (1995).Google Scholar
23. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, pp. 3432 (1975).Google Scholar
24. Hunt, R. W., Vanzetti, L., Castro, T., Chen, K. M., Sorba, L., Cohen, P. I., Gladfelter, W., Van Hove, J. M., Kuznia, J. N., Khan, M. A., and Franciosi, A., Physica B 185, pp. 415 (1993).Google Scholar
25. Yang, T., Nakajima, S., and Sakai, S., Jpn. J. Appl. Phys. 34, pp. 5912 (1995).Google Scholar
26. Dingle, R., Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B 4, pp. 1211 (1971).Google Scholar
27. Chuang, S. L. and Chang, C. S., Phys. Rev. B 54, pp. 2491 (1996).Google Scholar
28. Gil, B., Briot, O., and Aulombard, R. L., Phys. Rev. B 52, pp. R17028 (1995).10.1103/PhysRevB.52.R17028Google Scholar
29. Bir, G. L. and Pikus, G. E., Symmetry and Strain-Induced Effects in Semiconductor(Wiley, 1972).Google Scholar
30. Chelikowsky, J. R. and Cohen, M. L., Phys. Rev. B 14, pp. 556 (1976).Google Scholar
31. Monemar, B., Phys. Rev. B 10, pp. 676 (1974).Google Scholar
32. Volm, D., Oettinger, K., Streibl, T., Kovalev, D., Ben-Chorin, M., Diener, J., Meyer, B. K., Majewski, J., Eckey, L., Hoffman, A., Amano, H., Akasaki, I., Hiramatsu, K., Detchprohm, T., Phys. Rev. B 53, pp. 16543 (1996).Google Scholar
33. Pakula, K., Wysmolek, A., Korona, K. P., Baranowski, J. M., Stepniewski, R., Grzegory, I., Bockowski, M., Jun, J., Krukowski, S., Wroblewski, M., Porowski, S., Solid State Comm. 97, pp. 919 (1996).Google Scholar