Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T09:32:22.101Z Has data issue: false hasContentIssue false

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics

Published online by Cambridge University Press:  13 February 2015

Yingying Zhang
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
Xin Qian
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
Zhan Peng
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
Nuo Yang*
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
*
*Corresponding author: N.Y. (E-mail: [email protected] and [email protected])
Get access

Abstract

Thermal transport across interfaces is an important issue for microelectronics, photonics, and thermoelectric devices and has been studied both experimentally and theoretically in the past. In this paper, thermal interface resistance (1/G) between aluminum and silicon with nanoscale vacancies was calculated using non-equilibrium molecular dynamics (NEMD). Both phonon-phonon coupling and electron-phonon coupling are considered in calculations. The results showed that thermal interface resistance increased largely due to vacancies. The effect of both the size and the type of vacancies is studied and compared. And an obvious difference is found for structures with different type/size vacancies.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

Y.Z. and X.Q. contributed equally to this work.

References

REFERENCES

Swartz, E. T. and Pohl, R. O., Rev. Mod. Phys. 61 (3), 605-668 (1989).CrossRefGoogle Scholar
Cahill, D. G., Braun, P. V., Chen, G., Clarke, D. R., Fan, S., Goodson, K. E., Keblinski, P., King, W. P., Mahan, G. D., Majumdar, A., Maris, H. J., Phillpot, S. R., Pop, E. and Shi, L., Appl. Phys. Rev. 1 (1), 011305 (2014).CrossRefGoogle Scholar
Landry, E. S. and McGaughey, A. J. H., Phys. Rev. B 80 (16), 165304 (2009).CrossRefGoogle Scholar
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S. and Chen, G., Phys. Rev. B 85 (19), 195302 (2012).CrossRefGoogle Scholar
Stevens, R. J., Zhigilei, L. V. and Norris, P. M., Int. J. Heat Mass Tran. 50, 39773989 (2007).CrossRefGoogle Scholar
Cruz, C. A. d., Chantrenne, P. and Kleber, X., J. Heat Transf. 134, 062402 (2012).CrossRefGoogle Scholar
Komarov, P. L., Burzo, M. G., Kaytaz, G. and Raad, P. E., Microelectr. J. 34 (12), 1115-1118 (2003).CrossRefGoogle Scholar
Wang, Y., Ruan, X. and Roy, A. K., Phys. Rev. B 85 (20), 205311 (2012).CrossRefGoogle Scholar
Xu, J. and Fisher, T. S., Int. J. Heat Mass Tran. 49, 16581666 (2006).CrossRefGoogle Scholar
Yang, N., Luo, T., Esfarjani, K., Henry, A., Tian, Z., Shiomi, J., Chalopin, Y., Li, B. and Chen, G., J. Compt. Theor. NanoSci. (to be published in 2015), arXiv: 1401.5550.Google Scholar
Collins, K. C., Chen, S. and Chen, G., Appl. Phys. Lett. 97 (8), 083102 (2010).CrossRefGoogle Scholar
Hopkins, P. E., Phinney, L. M., Serrano, J. R. and Beechem, T. E., Phys. Rev. B 82 (8), 085307 (2010).CrossRefGoogle Scholar
Hopkins, P. E., Duda, J. C., Petz, C. W. and Floro, J. A., Phys. Rev. B 84, 035438 (2011).CrossRefGoogle Scholar
Majumdar, A. and Reddy, P., Appl. Phys. Lett. 84 (23), 4768-4770 (2004).CrossRefGoogle Scholar
Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A. and Chen, G., Phys. Rev. Lett. 107, 095901 (2011).CrossRefGoogle Scholar