Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T00:40:22.783Z Has data issue: false hasContentIssue false

Use of sub-10 nm Diameter Upconversion Nanophosphors as Bio-labels

Published online by Cambridge University Press:  01 February 2011

Shuang Fang Lim
Affiliation:
[email protected], North Carolina State University, Physics, Campus Box 8202, Raleigh, NC, 27695, United States, 9195130841, 9195130841
Robert Riehn
Affiliation:
[email protected], North Carolina State University, Physics, Campus Box 8202, Raleigh, NC, 27695, United States
Chih-Kuan Tung
Affiliation:
[email protected], Princeton University, Physics, Jadwin Hall, Princeton, NJ, 08544, United States
David Tank
Affiliation:
[email protected], Princeton University, Physics, Jadwin Hall, Princeton, NJ, 08544, United States
William S. Ryu
Affiliation:
[email protected], Princeton University, Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, 08544, United States
Nan Yao
Affiliation:
[email protected], Princeton University, PRISM, Princeton, NJ, 08544, United States
Robert H. Austin
Affiliation:
[email protected], Princeton University, Physics, Jadwin Hall, Princeton, NJ, 08544, United States
Get access

Abstract

We have synthesized rare-earth doped sub-10 nm diameter upconverting yttrium oxide based nanophosphors by flame spray pyrolysis. We have investigated the emitted visible fluorescence of the sub-10nm nanophosphors under both infrared excitation and electron excitation, and observed comparable narrow band emission spectra. The viability of the nanoparticles for biological imaging was confirmed by imaging the digestive system of the nematode worm C. elegans in the upconversion mode. We have surface functionalized the nanophosphors making them suitable for bio labeling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lim, S. F., Riehn, R., Ryu, W. S., Khanarian, N., Tung, C.-K., Tank, D., Austin, R. H., Nano Lett. 6, 169 (2006).Google Scholar
2. Nelson, J. A., Wagner, M. J., Chem. Mater. 14, 915 (2002).Google Scholar
3. Heer, S., K®ompe, K., G®udel, H.-U., Haase, M., Adv. Mater. 16, 2102 (2004).Google Scholar
4. Mai, H.-X., Zhang, Y.-W., Si, R., Yan, Z.-G., Sun, L.-D., You, L.-P., Yan, C.-H., J. Am. Chem. Soc. 128, 6426 (2006).Google Scholar
5. Boyer, J.-C., Vetrone, F., Cuccia, L. A., Capobianco, J. A., J. Am. Chem. Soc. 128, 7444 (2006).Google Scholar
6. Yi, G.-S., Chow, G.-M., J. Mater. Chem. 15, 4460 (2005).Google Scholar
7. Jossen, R., Mueller, R., Pratsinis, S. E., Watson, M., Akhtar, M. K., Nanotechnology 16, S609 (2005).Google Scholar
8. Bazzi, R., Flores-Gonzalez, M.A., Louis, C., Lebbou, K., Dujardin, C., Brenier, A., Zhang, W., Tillement, O., Bernstein, E., Perriat, P., J. Lumin. 102–103, 445 (2003).Google Scholar
9. Ammar, S., Helfen, A., Jouini, N., Fievet, F., Rosenman, I., Villain, F., Molinie, P., M. Danot, J. Mater. Chem. 11, 186 (2001).Google Scholar
10. Caruntu, D., Remond, Y., Chou, N. H., Jun, M.-J., Caruntu, G., He, J., Goloverda, G., OíConnor, C., Kolesnichenko, V., Inorg. Chem. 41, 6137 (2002).Google Scholar
11. Masala, O., Seshadri, R., Annu. Rev. Mater. Res. 34, 41(2004).Google Scholar
12. Rau, R. C.. “Advances in X-ray Analysis.” 5, 105 (1962) (Plenum Press: New Pork 1962.)Google Scholar
13. Powder Diffraction File JCPDS 65–3178 International Center for Diffraction Data, Swarthmore (1989).Google Scholar
14. OíConnor, B. H., Valentine, T. M., Acta Cryst. B25, 2140 (1969)Google Scholar