Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T01:42:31.403Z Has data issue: false hasContentIssue false

The Use of SiGe Barriers During the Formation of p+ Shallow Junctions by Ion Implantation

Published online by Cambridge University Press:  17 March 2011

Phillip E. Thompson
Affiliation:
Code 6812, Naval Research Laboratory, Washington, DC 20375, USA
Joe Bennett
Affiliation:
International SEMATECH, Austin TX 78741, USA
Susan Felch
Affiliation:
Applied Materials, Sunnyvale, CA 94086, USA
Get access

Abstract

Ultra-shallow p+ junctions are required for next generation electronics. We present a technique for the formation of ultra-shallow p+ junctions that increases the thermal stability of the junctions formed by ion implantation. By using a 10 nm Si1−xGex barrier layer, the diffusion of B is inhibited during high temperature processes. Alloys having a composition from x = 0 to 0.4 were investigated and it is shown that the most effective barrier had the maximum Ge fraction. The junction depth decreased to 36.7 nm for a 5×1015/cm2 1kV BF3 plasma implant spike annealed at 1050°C, compared to a junction depth of 48 nm for a Si control sample having the identical implant and anneal. It is hypothesized that the inhibition of B diffusion in the alloy layer is caused by a reduction of the Si self-interstitials in the alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The International Technology Roadmap for Semiconductors, 2003 ed. [http://public.itrs.net].Google Scholar
2. Collart, E. J. H., Weemers, K., Gravesteijn, D. J., and Berkum, J. G. M. Van, J. Vac. Sci. Tech. B 16, 280 (1998).Google Scholar
3. Matyi, R. J., Felch, S. B., Lee, B. S., Strathman, M. R., Keenan, J. A., Guo, Y., and Wang, L., J. Vac. Sci. Tech. B 16, 435 (1998).Google Scholar
4. Agarwal, A., Eaglesham, D. J., Gossmann, H.-J., Pelaz, L., Herner, S. B., Jacobson, D. C., Haynes, T. E., Erokhin, Y., and Simonton, R., IEDM Technol. Dig. 97, 467 (1997).Google Scholar
5. Agarwal, A., Gossmann, H.-J., and Eaglesham, D. J., Appl. Phys. Lett. 74, 2331 (1999).Google Scholar
6. Thompson, P. E. and Bennett, J., Appl. Phys. Lett. 77 2569 (2000).Google Scholar
7. Thompson, P. E. and Bennett, J., Materials Science and Engineering B89 211 (2002).Google Scholar
8. Thompson, P. E. and Bennett, J., J. Appl. Phys. 92, 6845 (2002).Google Scholar
9. Moriya, N., Feldman, L. C., Luftman, H. S., King, C. A., Bevk, J., and Freer, B., Phys. Rev. Lett. 71, 883 (1993).Google Scholar
10. Cowern, N. E. B., Zalm, P. C., Sluis, P. van der, Gravesteijn, D. J., and Boer, W. B. de, Phys. Rev. Lett. 72, 2585 (1994).Google Scholar
11. Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Appl. Phys. Lett. 66, 580 (1995).Google Scholar
12. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
13. Gossmann, H.-J., Haynes, T. E., Stolk, P. A., Jacobson, D. C., Gilmer, G. H., Poate, J. M., Luftman, H. S., Mogi, T. K., and Thompson, M. O., Appl. Phys. Lett. 71, 3862 (1997).Google Scholar
14. Shao, L., Liu, J., Wang, X., Chen, H., Thompson, P. E., and Chu, W.-K., Nucl. Instr. and Meth. in Phys. Res. B 206, 413 (2003).Google Scholar
15. Downey, D. F., Falk, S. W., Bertuch, A. F., and Marcus, S. D., J. Electron. Mater. 28, 1340 (1999).Google Scholar
16. Agarwal, A., Gossmann, H.-J., and Fiory, A. T., J. Electron. Mater. 28, 1333 (1999).Google Scholar
17. Fiory, A. T. and Bourdelle, K. K., J. Electron. Mater. 28, 1345 (1999).Google Scholar
18. Harrington, W. L., Magee, C. W., Pawlik, M., Downey, D. F., Osburn, C. M., and Felch, S. B., J. Vac. Sci. Technol. B. 16, 286 (1998).Google Scholar
19. Sasaki, Y., Itoh, K., Inoue, E., Kishi, S., and Mitsuishi, T., Solid-State Electron. 31, 5 (1988).Google Scholar