Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T10:52:41.022Z Has data issue: false hasContentIssue false

Up-Conversion Luminescence in Colloidal CdTe Nanocrystals

Published online by Cambridge University Press:  11 February 2011

S. A. Filonovich
Affiliation:
Departamento de Fisica Universidade do Minho, 4710–057 Braga, Portugal
M. J. M. Gomes
Affiliation:
Departamento de Fisica Universidade do Minho, 4710–057 Braga, Portugal
Yu. P. Rakovich
Affiliation:
Physics Department, Trinity College, Dublin 2, Ireland
J. F. Donegan
Affiliation:
Physics Department, Trinity College, Dublin 2, Ireland
D. V. Talapin
Affiliation:
Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
N. P. Gaponik
Affiliation:
Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
A. L. Rogach
Affiliation:
Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
A. Eychmüller
Affiliation:
Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
Get access

Abstract

We report on the efficient photoluminescence up-conversion in colloidally synthesized CdTe nanocrystals. We demonstrate that the efficiency of photon energy up-conversion and magnitude of spectral shift can be controlled: (i) by the size of the nanocrystals; (ii) by the temperature dependence of the excited state absorption coefficient; (iii) by the dependence on excitation intensity. From the analysis of the experimental data we can suggest that intrinsic gap states are involved as intermediate states in the photoluminescence up-conversion rather than nonlinear two-photon absorption or Auger processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ivanov, V. Yu., Semenov, Yu.G., Surma, M and Godlewski, M., Phys. Rev. B 54, 4696 (1996).Google Scholar
Cheong, H.M., Fluegel, B., Hanna, M.C. and Mascarenhas, A., Phys. Rev. B 58, 4254 (1998).Google Scholar
Heimbrodt, W., Happ, M. and Henneberger, F., Phys. Rev. B 60, 16326 (1999).Google Scholar
4. Hellmann, R., Euteneuer, A., Hense, S. G., Feldmann, J., Thomas, P., Göbel, E. O., Yakovlev, D. R., Waag, A. and Landwehr, G., Phys. Rev. B 51, 18 053 (1995).Google Scholar
5. Paskov, P.P., Holtz, P.O., Monemar, B., Garcia, J.M., Schoenfeld, W.V. and Petroff, P.M., Appl. Phys. Lett. 77, 812 (2000).Google Scholar
6. Ignatiev, I.V., Kozin, I.E., Wen Ren, H., Sugou, S. and Masumoto, Y., Phys. Rev. B 60, 14001 (1999).Google Scholar
7. Poles, E., Selmarten, B.C., Micic, O.I., Nozik, A.I., Appl. Phys. Lett. 75, 971 (1999).Google Scholar
8. Heimbrodt, W., Falk, H. and Klar, P.J., J. Lumin. 87&89, 344 (2000).Google Scholar
9. Beckmann, E., Broser, I. and Broser, R., Luminescence of Crystals, Molecules, and Solutions. ed. Williams, F. (Plenum Press, New York 1973) pp.155161.Google Scholar
10. Johnson, E.J., Kafalas, J., Davies, R.W. and Dyes, W.A., Appl. Phys. Lett. 40, 993 (1982).Google Scholar
11. Diener, J., Kovalev, D., Heckler, H., Polisski, G., Kunzner, N., Koch, F., Efros, Al.L. and Rosen, M., Optics Materials 17, 135 (2001).Google Scholar
12. Rakovich, Yu.P., Filonovich, S.A., Gomes, M.J.M., Donegan, J.F., Talapin, D.V., Rogach, A.L. and Eychmüller, A., Phys. Stat. Sol. B 229, 449 (2002).Google Scholar
13. Dantas, N.O., Qu, F. and Morais, R.S.S.P.C., J. Phys. Chem. B 106, 7453 (2002).Google Scholar
14. Driessen, F.A.J.M., Cheong, H.M., Mascarenhas, A., Deb, S.K., Hageman, P.R., Bauhuis, G.J. and Giling, L.I., Phys. Rev. B 54, 5263 (1996).Google Scholar
15. Lyo, S.K., Phys. Rev. B 62, 13641 (2000).Google Scholar
16. Rogach, A.L., Katsikas, L., Kornowski, A., Su, D., Eychmüller, A. and Weller, H., Ber. Bunsenges. Phys. Chem. 100, 1772 (1996).Google Scholar
17. Hoheisel, W., Colvin, V.L., Johnson, C.S. and Alivisatos, A.P., J. Chem. Phys. 101, 8455 (1994).Google Scholar
18. Bawendi, M.G., Carrol, P.J., Wilson, W. and Brus, L., J. Chem. Phys. 96, 946 (1992).Google Scholar
19. Shim, M., Wang, C. and Guyot-Sionnest, P., J. Phys. Chem. B 105, 2369 (2001).Google Scholar
20. Nirmal, M., Murray, C.B. and Bawendi, M.G., Phys. Rev. B 50, 2293 (1994).Google Scholar
21. Underwood, D.F., Kippeny, T. and Rosenthal, S.J., J. Phys. Chem. B 105, 436 (2001).10.1021/jp003088bGoogle Scholar
22. Efros, Al.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J. and Bawendi, M.G., Phys. Rev. B 54, 4843 (1996).Google Scholar
23. Klimov, V.I. and McBranch, D.W., Phys. Rev. Lett. 80, 4028 (1998).Google Scholar
24. Eychmüller, A., Hasselbarth, A., Katsikas, L. and Weller, H., J. Lumin. 48&49, 745 (1991).Google Scholar
25. O'Neil, M., Marohn, J. and McLendon, G., J. Phys. Chem. 94, 4356 (1990).Google Scholar
26. Kapitonov, A.M., Stupak, A.P., Gaponenko, S.V., Petrov, E.P., Rogach, A.L. and Eychmüller, A., J. Phys. Chem. B 103, 10109 (1999).Google Scholar