Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:39:32.866Z Has data issue: false hasContentIssue false

Unusual Change in Columnar Defect Morphology in YBCO upon Annealing

Published online by Cambridge University Press:  21 March 2011

Y. Yan
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
M. A. Kirk
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
A. Petrean
Affiliation:
Department of Physics, Western Michigan University, Kalamazoo, MI 49008
L. Paulius
Affiliation:
Department of Physics, Western Michigan University, Kalamazoo, MI 49008
Get access

Abstract

We show evidence from transmission electron microscopy of an unusual change in columnar defect morphology in YBCO upon annealing to 600°C. The disappearance of the nanotwinned, but not the larger scaled thermal twinned, structure is found. A removal of the large fluctuations in the diameter of the amorphous column, preserving a narrow continuous column, is surprisingly discovered. Correlations with magnetization measurements demonstrate the greater efficiency of vortex pinning at 77 K by the annealed defect structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kirk, M. A. and Yan, Y., Micron 30, 507 (1999).Google Scholar
2. Yan, Y. and Kirk, M. A., Phys. Rev. B 57, 6152 (1998).Google Scholar
3. Yan, Y. and Kirk, M. A., Philos. Mag. Lett. 79, 841 (1999).Google Scholar
4. Thompson, J. R., Paul, D., Wang, Z. L., Kroeger, D. M., and Christen, D. K., Appl. Phys. Lett. 67, 1007 (1995).Google Scholar
5. Petrean, A. M., Paulius, L. M., Yan, Y., Kirk, M. A., Kwok, W.-K., and Crabtree, G. W., submitted to Phys. Rev. B.Google Scholar
6. Kaiser, D. L., Holtzberg, F., Chisholm, M. F., and Worthington, T. K., J. Cryst. Growth 85, 593 (1987).Google Scholar
7. Wheeler, R., Kirk, M. A., Marwick, A. D., Civale, L., and Holtzberg, F. H., Appl. Phys. Lett. 63, 1573 (1993).Google Scholar
8. Zhu, Y., Cai, Z. X., Budhani, R. C., Suenaga, M., and Welch, D. O., Phys. Rev. B 48, 6436 (1994).Google Scholar
9. Frischherz, M. C., Kirk, M. A., Farmer, J., Greenwood, L. R., Weber, H. W., Physica C 232, 309 (1994).Google Scholar
10. Yan, Y., Doyle, R. A., Seow, W. S., Campbell, A. M., Wirth, G., and Stobbs, W. M., Inst. Phys. Conf. Ser. No 147, Sec 10, 433 (1995).Google Scholar
11. Giapintzakis, J., Lee, W. C., Rice, J. P., Ginsberg, D. M., Robertson, I. M., Wheeler, R., Kirk, M. A., and Ruault, M.-O., Phys. Rev. B 45, 10 677 (1992).Google Scholar
12. Lopez, D., Krusin-Elbaum, L., Safar, H., Righi, E., F. de la Cruz, Grigera, S., Field, C., Kwok, W. K., Paulius, L., and Crabtree, G. W., Phys. Rev. Lett. 80, 1070 (1998).Google Scholar
13. Kirk, M. A., Cryogenics 33, 235 (1993).Google Scholar