Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:14:59.555Z Has data issue: false hasContentIssue false

Undercooling of Bulk High Temperature Metals in the 100 Meter Drop Tube

Published online by Cambridge University Press:  26 February 2011

William Hofmeister
Affiliation:
Vanderbilt University, Box 6309, Station B, Nashville, TN 37235
M. B. Robinson
Affiliation:
ES-72, NASA/MSFC, Huntsville, AL 35812
R. J. Bayuzick
Affiliation:
Vanderbilt University, Box 6309, Station B, Nashville, TN 37235
Get access

Abstract

The 100 meter Drop Tube at NASA Marshall Space Flight Center provides an excellent opportunity to study the effects of containerless, microgravity processing in metals and alloys. In a series of experiments high melting temperature pure metals were melted in an electron beam furnace and dropped in vacuum. Sample sizes ranged from 0.175-1.2 grams. Large undercoolings on the order of 18% of the melting temperature were observed in Ti, Zr, Nb, Mo, Rh, Ta, and Pt. Undercoolings of 5-18% Tm were observed in Ru and Ir. These undercooling results are consistent, repeatable, and occur in a high percentage of experiments. The experimental technique will be presented as well as the resultant microstructures of undercooled drops. The data will be discussed with respect to nucleation theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hofmeister, W. H., Evans, N. D., Bayuzick, R. J., and Robinson, M. B., Met Trans A 17A, 1421 (1986).Google Scholar
2. Bizid, A., Bosio, L., Curten, H., Defrain, A., and Dupont, M., Phys. Stat. Sol. 23, 135 (1974).Google Scholar
3. Fahrenheit, D. B., Phil. Trans. Roy. Soc. 39, 78 (1724).Google Scholar
4. Bardenheuer, P. and Bleckmann, R., Mit KWI Eisenforschg. 21, 201 (1939).Google Scholar
5. Powell, G. L. F., Trans. AIME 239, 1662 (1967).Google Scholar
6. Devaud, G. and Turnbull, D., J. Appl. Phys. Lett. 46 (9), 844 (1985).Google Scholar
7. Powell, G. L. F., Trans. AIME 239, 1244 (1967).Google Scholar
8. Fehling, J. and Scheil, E., Z. Metallkde 53, 593 (1962).Google Scholar
9. Powell, G. L. F. and Hogan, L. M., Trans. AIME 245, 407 (1969).Google Scholar
10. Willnecker, R., Herlach, D. M., and Feuerbcher, B., J. Appl. Phys. Lett. 49 (20) 1339 (1986).Google Scholar
11. Gomersall, D. W., Shiraishi, S. Y., and Ward, R. G., J. Aust. Inst. Metals 10 (3), 220 (1965).Google Scholar
12. Vonnegut, B., J. Colloid. Sci. 3, 563 (1948).Google Scholar
13. Turnbull, D. and Cech, R. E., J. Appl. Phys. 21, 804 (1950).Google Scholar
14. Bosio, P. L., Defrain, A., and Epelboin, R., Le Journal de Physique 27, 61 (1966).Google Scholar
15. Perepezko, J. H. and Paik, J. S., Novel Materials and Techniques in Condensed Matter in Proceedings of the 29th Midwest Solid State Conference, 25-26 September 1984, Argonne, IL, p.57.Google Scholar
16. Perepezko, J. H. and Anderson, I. E., in TMS-AIME Symposium on the Synthesis and Properties of Metastable Phases, Rowland, T. J. and Machen, E. S., eds., Warrendale, PA (1980), p.31.Google Scholar
17. Holloman, H. and Turnbull, D., Progress in Metal Physics, Volume 4, (Pergamon Press, Ltd., London, 1953) p. 333.Google Scholar
18. Skripov, V. P., Current Topics in Materials Science: Crystal growth and Materials, Volume 2, Kaldis, E. and Scheel, H. J., eds. North Holland Pub. Co. (1977), p. 328.Google Scholar
19. Rasmussen, D. H., Javed, K., Appleby, M., and Witkowski, R., Materials Letters 3 (9–10), 344 (1985).Google Scholar
20. Ovsienko, D. E., Kostuchenko, Maslov V. V., Kristallografia 16, 405 (1971).Google Scholar
21. Dukin, A. I., Sb. Problemi metallovedenia i fiziki metallov (Metallurgizdat, Moscow, 1959), p.9.Google Scholar
22. Nelson, L. S., High Temperature Technology, in Proc. of the Intl. Symp. Pacific Grove, CA (1967) (Butterworth, London, 1969), p. 565.Google Scholar
23. Takagi, M., J. Phys. Soc. Japan 9, 359 (1954).Google Scholar
24. Ahdanov, G. S. and Verzner, V. N., Fizika tverdogo tela 8, 1021 (1966).Google Scholar
25. Pocza, J. F., International Conference on Physics and Chemistry: Semiconductors, Heterojunctions, and Layer Structures, Volume 3 Budapest 1970, (Budapest, 1971) 61.Google Scholar
26. Stowell, M. J., Phil. Mag 22, 1 (1970).Google Scholar
27. Skovov, N. V., Kik, A. A., Koverda, V. P., and Skripov, V. P., Kristallografiya 30, 409 (1985).Google Scholar
28. Gladkikh, N. T., Latin, V. I., Severin, V. M., and Hotkevich, V. I., Mekanizmi kinetika kristallizatsii, (tezisi dokladov), (Minsk, 1971), p. 45.Google Scholar
29. Hofmeister, W. H., Robinson, M. B., and Bayuzick, R. J., J. Appl. Phys. Lett. 49 (20), 1342 (1986).Google Scholar
30. Bayuzick, R. J., Evans, N. D., Hofmeister, W. H., Johnson, K. R., and Robinson, M. B., Adv. Space Res. 4 (5), 85 (1980).Google Scholar
31. Margrave, J. L.. Colloque Int. sur l'etude des Transformations a Haute temperature av-dessus de 2000K, Odeillo, France, 1971, (Editions du Centre National de la Recherche Scientifique, 71, Paris, France, 1971).Google Scholar
32. Drehman, A. J. and Turnbull, D., Scripta Mel 15, 543 (1981).Google Scholar
33. Uhlman, D. R., J. Non-Cryst. Sol. 41, 347 (1980).Google Scholar
34. Tyndall, J., Prod. Roy. Soc. 9, 76 (1858).Google Scholar
35. Kaykin, S. E. and Bené, N. P., C. R. Acad. Sci. URSS 23, 31 (1939).Google Scholar
36. Lacy, L. L., Robinson, M. B., and Rathz, T., J. Crystal. Growth 51, 47 (1981).Google Scholar
37. Rovner, L. H., Drowart, A., Degreve, F., and Drowart, J., Airforce Materials Lab Report AFML-TR-68-200 July 1968.Google Scholar
38. ono, K. and Moriyama, J., Met. Trans.B 13B, 241 (1982).Google Scholar
39. Joshi, A. and Strongin, M., Scripta Met. 8, 413 (1974).Google Scholar
40. Levi, C. G. and Mehrabian, R., Met. Trans. B 11B, 21 (1980).Google Scholar