Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T18:45:59.706Z Has data issue: false hasContentIssue false

Ultrathin AlN/GaN Heterojunctions by MBE for THz Applications

Published online by Cambridge University Press:  01 February 2011

Yu Cao
Affiliation:
[email protected], University of Notre Dame, Electrical Engineering, 275 Fitzpatrich Hall, University of Notre Dame, Notre Dame, IN, 46556, United States
Debdeep Jena
Affiliation:
[email protected], University of Notre Dame, Electrical Engineering, Notre Dame, IN, 46556, United States
Get access

Abstract

High electron mobility transistor (NEMT) based on AlN/GaN can be the source to generate terahertz (THz) radiation. The basic requirements are that a) the electron density in the 2DEG should be large enough for ensuring that the electron-electron scattering mean-free path is much shorter than the distance between the contacts to ensure a viscous, fluid-like flow, and b) the mobility should be high enough such that the possible plasma modes are not strongly damped. To show AlN/GaN HEMT is a qualified candidate for THz generation, we have calculated the plasma frequency for the two-dimensional electron gas (2DEG) in the GaN channel and compared it with other material, such as Si, GaAs and InAs. 3nm AlN has been grown on the GaN substrate by Nitrogen-source radio-frequency molecular-beam expitaxy (RFMBE). The growth temperature has been optimized and found to be 730C. Results from Hall measurement show the electron charge is ∼2.5*1013 cm−2 with the mobility of 530 cm2/Vs (room temperature) and 860 cm2/Vs (77K). A series AlN samples have been grown and studied by AFM, which shows the critical thickness of AlN on GaN is between 4nm and 5nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yajima, T. and Takeuchi, N., Jpn. J. Appl. Phys. 9, 1361 (1970).Google Scholar
2. Yang, K., Richards, P. and Shen, Y., Appl. Phys. Lett. 19, 320 (1971).Google Scholar
3. Xu, L., Zhang, X. and Auston, D., Appl. Phys. Lett. 61, 1784 (1992).Google Scholar
4. Suzuki, M., Kiwa, T., Tonouchi, M., Nakajima, Y., Sasa, S. and Inoue, M., Phys. E 22, 574 (2004).Google Scholar
5. Teppe, F., Veksler, D., Xie, X., Zhang, X., Rumyantsev, S., Knap, W. and Shur, M., Appl. Phys. Lett. 87, 022102 (2005).Google Scholar
6. Vodopyanov, K., Fejer, M., Yu, X., Harris, J., Lee, Y., Hurlbut, W., Kozlov, V., Bliss, D. and Lynch, C., Appl. Phys. Lett. 89, 141119 (2006)Google Scholar
7. Köhler, R., Tredicucci, A., Beltram, F., Beere, H., Linfield, E., Davies, A., Ritchie, D., Lotti, R. and Rossi, F., Nature 417, 156 (2002).Google Scholar
8. Kumar, S., Williams, B. and Hu, Q., Appl. Phys. Lett. 88, 121123 (2006).Google Scholar
9. Vitiello, M. and Scamarcio, G., Appl. Phys. Lett. 89, 131114 (2006).Google Scholar
10. Dyakonov, M. and Shur, M., Phys. Rev. Lett. 71, 2465 (1993).Google Scholar
11. Dyakonov, M. and Shur, M., Appl. Phys. Lett. 87, 111501 (2005)Google Scholar
12. Knap, W., Lusakowski, J., Parenty, T., Bollaert, S., Cappy, a., Popov, V., Shur, M., Appl. Phys. Lett. 84, 2331 (2004).Google Scholar
13. Lusakowski, J., Knap, W., Dyakonova, N., Varani, L., Mateos, J., Gonzalez, T., Roelens, Y., Bollaert, S., Cappy, A. and Karpierz, K., J. Appl. Phys. 97, 064307 (2005).Google Scholar
14. Dyakonova, N., Fatimy, A., Lusakowski, J., Knap, W., Dyakonov, M., Poisson, M., Morvan, E., Bollaert, S., Shchepetov, A., Roelens, Y., Gaquiere, C., Theron, D. and Cappy, A., Appl. Phys. 88, 141906 (2006)Google Scholar
15. Binari, S., Doverspike, K., Kelner, G., Dietrich, H. and Wickenden, a., Solid-State Electron. 41, 177 (1997).Google Scholar
16. Alekseev, E., Eisenbach, A., and Pavlidis, d., Electron. Lett. 35, 2145 (1999).Google Scholar
17. Smorchkova, I., Keller, S., Heikman, S., Elsass, C., Heying, B., Fini, P., Speck, J. and Mishra, U., Appl. Phys. Lett. 77, 3998 (2000).Google Scholar