Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T11:02:02.118Z Has data issue: false hasContentIssue false

Two-dimensional Epitaxial Growth of Strained InGaAs on GaAs (001)

Published online by Cambridge University Press:  11 February 2011

Hong Wen
Affiliation:
MRSEC and Microelectronics-Photonics Program, University of Arkansas, Fayetteville, Ar 72701, U.S.A.
Zhiming Wang
Affiliation:
MRSEC and Microelectronics-Photonics Program, University of Arkansas, Fayetteville, Ar 72701, U.S.A.
G.J. Salamo
Affiliation:
MRSEC and Microelectronics-Photonics Program, University of Arkansas, Fayetteville, Ar 72701, U.S.A.
Get access

Abstract

Molecular beam epitaxy growth of lattice mismatched In0.53Ga0.47As / GaAs(100) system is studied by in situ scanning tunneling microscope (STM) and reflection high energy electron diffraction. InGaAs layers with a thickness ranging up to 250 nm do not exhibit a smooth surface when grown under In-rich conditions. RHEED and STM confirm the well-ordered (4×2) reconstruction and mono-layer steps associated with this unique planar growth mode. Large STM scans reveal a characteristic morphology of rectangular shaped islands distributed on large flat terraces which are typically more than 300 nm width but only mono-layer steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Henderson, T., Aksum, M.I., Peng, C.K., Duh, H.K.G., Lester, L.F., IEEE Electron Devices Lett. EDL-7 (1996) 649 Google Scholar
2. Kordo, K., Saito, J., Igarashi, T., Nanbu, K., Tshikawa, T., J. Crystal Growth 95 (1989) 309 Google Scholar
3. Chao, A.Y., Caseyjr, H.C., Appl. Phys. Lett. 25 (1974) 288 Google Scholar
4. Bethea, C.G., Levine, B.F., Shen, V.O., Abbol, R.R., Hsieh, S.J., IEEE Electron Devices ED-38 (1991) 1118 Google Scholar
5. Eaglesham, D.J. and Cerullo, M., phys. Rev. Lett. 64, 1943 (1990)Google Scholar
6. Guha, S. et al., Appl. Phys. Lett. 57, 2110 (1990)Google Scholar
7. Snyder, C.W. et al., Appl. Phys. Lett. 66, 3032 (1991)Google Scholar
8. Schaffer, W.J. et al., J. Vac. Sci. Technol. B B1, 688 (1983)Google Scholar
9. Williams, R. S. et al., J. Vac. Sci. Technol. 21, 386 (1982)Google Scholar
10. Behrend, J., Wassermeier, M., and Ploog, K. H., J. Cryst. Growth, 167, 440 (1996)Google Scholar
11. Hopkinson, M., Claxton, P. A., David, J. P. R., Hill, G., Reddy, M., and Pate, M. A., in 3rd International Conference on InP and Related aterials, Cardiff (1991)Google Scholar
12. Sobiesierski, Z., Clark, S.A., Williams, R.H., Tabata, A., Benyattou, T., Guillot, G., Gendry, M., Hollinger, G., and Viktorovitch, P., Appl. Phys. Lett. 58, 1863 (1991)Google Scholar
13. Chang, J. C. P., Chin, T. P., and Wookall, J. M., Appl. Phys. Lett. 69, 981 (1996).Google Scholar
14. Snyder, C.W. et al., Appl. Phys. Lett. 62, 46 (1993)Google Scholar
15. Tournie, E., Grandjean, N., Trampert, A., Massies, J., Ploog, K.H., J. Cryst. Growth, 150, 460 (1995)Google Scholar
16. Alberto Pimpinelli and Jacques Villain, Physics of Crystal Growth, P73 Google Scholar
17. Yamauchi, H., fahy, M.R., and Joyce, B.A., Appl. Phys. Lett. 69 (6), 116(1996)Google Scholar
18. Zhang, X. M., Pashley, D. W., Kamiya, I., Neave, J. H., and Joyce, B. A., J. Cryst. Growth 147, 234 (1995)Google Scholar
19. Springholz, G. and Wiesauer, K., Phys. Rev. Lett. 88. 015507 (2002)Google Scholar
20. Xue, Q. K., Hasegawa, Y., Ogino, T., Kiyama, H., and Sakurai, T., J. Vac. Sci. Technol. B 15, 1270 (1997).Google Scholar