Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T12:07:47.520Z Has data issue: false hasContentIssue false

Twin-domain Epitaxial Growth and Metal-insulator Transition of VO2 Thin Film on C-Plane Sapphire

Published online by Cambridge University Press:  02 February 2011

Changhong Chen
Affiliation:
Nano Tech Center and Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409-3102, U.S.A. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Yong Zhao
Affiliation:
Nano Tech Center and Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409-3102, U.S.A.
Xuan Pan
Affiliation:
Nano Tech Center and Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409-3102, U.S.A.
Mark Holtz
Affiliation:
Nano Tech Center and Department of Physics, Texas Tech University, Lubbock, TX 79409-1051, U.S.A.
Zhaoyang Fan
Affiliation:
Nano Tech Center and Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409-3102, U.S.A.
Get access

Abstract

We report heteroepitaxial growth of VO2 thin film on c-plane sapphire by pulsed DC magnetron sputtering. X-ray diffraction experiment indicates that the 150 nm thick film is in triple-domain (020)-epitaxial structure with six-fold rotational symmetry in the basal plane; in particular, off-axis Φ scans from (011) and (220) show twin and triple peaks in each group of the diffraction profiles due to angle β mismatch and V4+-V4+ dimerization, respectively. The epitaxial relationship between VO2 and c-plane sapphire can be concluded as be , with the in-plane lattice mismatch of 2.66% (tensile) along and the out-of-plane lattice mismatch of -2.19% (compressive). Temperature dependence of resistivity in van der Pauw method shows that the resistivity changes by ~5 orders of magnitude through the metal-insulator transition, and a narrow hysteresis window of ~3 K is obtained between cooling and heating cycles with respect to phase-transition temperatures at 347.1 and 350.1 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).Google Scholar
2. Kim, D. H. and Kwok, H. S., Appl. Phys. Lett. 65, 3188 (1994).Google Scholar
3. Qazilbash, M. M., Li, Z. Q., Podzorov, V., Brehm, M., Keilmann, F., Chae, B. G., Kim, H. T., and Basov, D. N., Appl. Phys. Lett. 92, 241906 (2008).Google Scholar
4. Han, Y. H., Kim, K. T., Shin, H. J., Moon, S., and Choi, I. H., Appl. Phys. Lett. 86, 254101 (2005).Google Scholar
5. Kim, H. T., Chae, B. G., Youn, D. H., Kim, G., Kang, K. Y., Lee, S. J., Kim, K., and Lim, Y. S., Appl. Phys. Lett. 86, 242101 (2005).Google Scholar
6. Jiang, L. and Carr, W. N., J. Micromech. Microeng. 14, 833 (2004).Google Scholar
7. Chen, C., Zhu, Yanhan, Zhao, Y., Lee, J. H., Wang, H., Bernussi, A., Holtz, M., and Fan, Z., Appl. Phys. Lett. 97, 211905 (2010).Google Scholar
8. Dumas-Bouchiat, F., Champeaux, C., Catherinot, A., Crunteanu, A., and Blondy, P., Appl. Phys. Lett. 91, 223505 (2007).Google Scholar
9. Gupta, A., Aggarwal, R., Gupta, P., Dutta, T., Narayan, R. J., and Narayan, J., Appl. Phys. Lett. 95, 111915 (2009).Google Scholar