Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T08:12:04.220Z Has data issue: false hasContentIssue false

Tunable Second-Harmonic Studies of Gan Films Near the Fundamental Bandedge

Published online by Cambridge University Press:  21 February 2011

Joseph Miragliotta
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723–6099
Wayne A. Bryden
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723–6099
Thomas J. Kistenmacher
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723–6099
Dennis K. Wickenden
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723–6099
Get access

Abstract

Tunable second-harmonic (SH) transmission measurements were performed on a series of GaN films epitaxially deposited onto (OOOl)-oriented sapphire. Analysis of the nonlinear response showed an increase in the second-order nonlinear susceptibility (χ(2)ijk) when the photon energy of the SH field was tuned above the absorption edge in each respective film. Specifically, the magnitude of the χ(2)zxx element in χ(2)ijk reached a maximum of 0.5 × 10-7 e.s.u. just above the the fundamental bandgap with a dispersion similar to the predicted nonlinear response in wide-bandgap cubic zincblende II-VI semiconductors such as ZnSe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miragliotta, J., Wickenden, D. K., Kistenniacher, T. J., and Bryden, W. A., J. Opt. Soc. Am. B, 10, 1447 (1993).Google Scholar
2. Miragliotta, J., Bryden, W. A., Kistenmacher, T. J., and Wickenden, D. K., in Proceedings of the 5th ICSCRM, edited by Devaty, R. and Choyke, W.T. (1993).Google Scholar
3. Ghahramani, E., Moss, D.J., and Sipe, J. E., Phys. Rev. B, 43, 9700 (1991).Google Scholar
4. Ching, W. Y. and Huang, M.-Z., Phys. Rev. B, 47, 9479 (1993).Google Scholar
5. Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Estes-Wickenden, A., Mat. Res. Soc. Symp. Proc, 221, 167 (1991).Google Scholar
6. Parson, F. G., Yi Chen, E., and Chang, R. K., Phys. Rev. Lett., 27, 1436 (1971).Google Scholar
7. Bloembergen, N. and Pershan, P. S., Phys. Rev., 128, 606 (1962).Google Scholar
8. Ejder, E., Phys. Status Solidi a, 6, 442 (1971).Google Scholar
9. Jerphagnon, J. and Durtz, S. K., J. Appl. Phys., 41, 1667 (1970).Google Scholar
10. Maker, P. D., Terhune, R. W., Nisenoff, M., and Savage, C. M., Phys. Rev. Lett., 8, 21 (1962).Google Scholar
11. Amano, H., Watanabe, N., Koide, N., and Akasaki, I., Jpn. J. Appl. Phys., 32, L1000 (1993).Google Scholar
12. Bloom, S., Phys, J.. Chem. Solids, 32, 2027 (1971);Google Scholar
Bloom, S., Harbeke, G., Meier, E., and Ortenburger, I. B., Phys. Stat. Sol. (b), 66, 161 (1974).Google Scholar
13. Xu, Y.-N. and Ching, W. Y., Phys. Rev. B, 48, 4335 (1993);Google Scholar
Miwa, K. and Fukumoto, A., Phys. Rev. B, 48, 7897 (1993);Google Scholar
Lambrecht, W. R. L. and Segall, B., Mat. Res. Soc. Symp. Proc, 242, 367 (1992).Google Scholar
14. Adachi, S., Phys. Rev. B, 43, 9569 (1991).Google Scholar
15. Xu, Y.-N. and Ching, W. Y., Phys. Rev. B 48, 4335 (1993).Google Scholar
16. Dingle, R., Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B, 4, 1211 (1971).Google Scholar
17. Boyd, R., Nonlinear Optics, (Academic Press, 1992), pg 52.Google Scholar
18. Levine, B. F., Phys. Rev. B, 7, 2600 (1973).Google Scholar