Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T18:45:13.481Z Has data issue: false hasContentIssue false

Tri-axial magnetic alignment and rare-earth-dependent tri-axial magnetic anisotropies in REBa2Cu4O8 cuprate superconductors

Published online by Cambridge University Press:  17 December 2013

M. Yamaki
Affiliation:
Department of Environmental Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami-city, Kochi, 782-8502, Japan
M. Furuta
Affiliation:
Department of Environmental Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami-city, Kochi, 782-8502, Japan
T. Doi
Affiliation:
Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto-city, Kyoto, 606-8501, Japan
J. Shimoyama
Affiliation:
Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
S. Horii
Affiliation:
Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto-city, Kyoto, 606-8501, Japan
Get access

Abstract

We report the growth of single crystals by a flux method in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) on REBa2Cu4O8 (RE124, RE; rare earth elements) compounds. RE124 crystals were grown for RE = Y, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb through appropriate choice of source compounds. All the obtained RE124 powders were tri-axially aligned in MRF of 10T, whereas magnetization axes depended on the type of RE. Moreover, it was found from the changes in the degrees of c-axis and inplane orientation that tri-axial magnetic anisotropies of RE124 also depended on the type of RE. This indicates that it appropriate choice of RE is important for the fabrication of tri-axial oriented ceramics in lower magnetic field conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dimos, D., Chaudhari, P., and Manhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
Kimura, T., Kimura, F., and Yoshino, M., Langmuir 22, 3464 (2006).CrossRefGoogle Scholar
De Rango, P., Lees, M., Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P, and Pernet, M, Nature 349, 770 (1991).CrossRefGoogle Scholar
Fukushima, T., Horii, S., Uchikoshi, T., Ogino, H., Ishihara, A., Suzuki, T. S., Sakka, Y., Shimoyama, J., and Kishio, K., IEEE Trans. Appl. Supercond. 19, 2961 (2009).CrossRefGoogle Scholar
Yamaki, M., Horii, S., Haruta, M., Maeda, T., and Shimoyama, J., Physica C 471,872 (2011).CrossRefGoogle Scholar
Horii, S., Matsubara, I., Sano, M., Fujie, K., Suzuki, M., Funahashi, R., Shikano, M., Shin, W., Murayama, N., Shimoyama, J., and Kishio, K., Jpn. J. Appl. Phys. 42 (2003) 7018.CrossRefGoogle Scholar
Okamoto, T., Horii, S., Uchikoshi, T., Suzuki, T. S., Sakka, Y., Funahashi, R., Ando, N., Sakurai, M., Shimoyama, J., and Kishio, K., Appl. Phys. Lett. 89, (2006) 081912.CrossRefGoogle Scholar
Song, Y. T., Peng, J. B., Wang, X., Sun, G. L., and Lin, C. T.: J. Cryst. Growth 300, 263 (2007).CrossRefGoogle Scholar
Yamaki, M., Horii, S., Haruta, M., Shimoyama, J., Jpn. J. Appl. Phys. 51, 010107 (2012).Google Scholar
Stevens, K. W. H., Proc. Phys. Soc. London Ser. A65, 209 (1952).CrossRefGoogle Scholar
Ishihara, A., Horii, S., Uchikoshi, T., Suzuki, T. S., Sakka, Y., Ogino, H., Shimoyama, J., and Kishio, K., Appl. Phys. Express. 1, 031701 (2008).CrossRefGoogle Scholar