Article contents
Transition State Model for Grain Boundary Motion During Ion Bombardment
Published online by Cambridge University Press: 26 February 2011
Abstract
Ion bombardment of polycrystalline Ge, Si, and Au films leads to rates of grain boundary motion that greatly exceed rates of thermally-induced motion at the same temperature and which exhibit a weak temperature dependence. The enhanced migration rate is proportional to the rate of energy deposition in nuclear collisions at or very near the grain boundary. Experimental work is reviewed, and a transition state model is presented which accounts for the observed kinetics of grain boundary migration during bombardment. This model suggests that the rate limiting step in grain boundary motion may be thermally-induced migration of a bombardment-generated defect across the boundary. Also, the ratio of atomic jumps at grain boundaries to the local collision-induced Frenkel defect generation rate is shown to be characteristic of each material, but independent of ion mass and ion flux. The model is extended to the motion of an interface between two phases, and applications to crystallization during ion bombardment are discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1988
References
REFERENCES
- 5
- Cited by