Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T03:05:17.993Z Has data issue: false hasContentIssue false

Towards Next-Generation Proteomic Assays: Functional Materials as Sieving Matrices and Binding Scaffolds

Published online by Cambridge University Press:  29 December 2011

Samuel Q. Tia
Affiliation:
University of California, Berkeley, Bioengineering, 308B Stanley Hall MC # 1762, Berkeley, CA 94720, U.S.A.
Alex J. Hughes
Affiliation:
University of California, Berkeley, Bioengineering, 308B Stanley Hall MC # 1762, Berkeley, CA 94720, U.S.A.
Kelly Karns
Affiliation:
University of California, Berkeley, Bioengineering, 308B Stanley Hall MC # 1762, Berkeley, CA 94720, U.S.A.
M. Kursad Araz
Affiliation:
University of California, Berkeley/University of California San Francisco, Graduate Program in Bioengineering, Berkeley, CA 94720, U.S.A.
Mei He
Affiliation:
University of California, Berkeley/University of California San Francisco, Graduate Program in Bioengineering, Berkeley, CA 94720, U.S.A.
Dohyun Kim
Affiliation:
University of California, Berkeley/University of California San Francisco, Graduate Program in Bioengineering, Berkeley, CA 94720, U.S.A.
Amy E. Herr
Affiliation:
University of California, Berkeley, Bioengineering, 308B Stanley Hall MC # 1762, Berkeley, CA 94720, U.S.A. University of California, Berkeley/University of California San Francisco, Graduate Program in Bioengineering, Berkeley, CA 94720, U.S.A.
Get access

Abstract

Next-generation bioanalytical approaches for protein-level measurements are advanced by the integration capacity of microfluidic design strategies, as well as the fine fluid and material control possible. Photopatterning of polymers within fluidic volumes is a key tool in the suite of technologies available for seamless integration of assay measurement modalities, as well as rapid target detection. Here, we overview recent advances in heterogeneous and homogeneous immunoassays using functional polymers, electrophoretic transport, and microdevices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Hou, C.; Herr, A. E., Ultrashort Separation Length Homogeneous Electrophoretic Immunoassays Using On-Chip Discontinuous Polyacrylamide Gels. Anal Chem 2010, 82(8), 3343–3351; (b)Herr, A. E.; Hatch, A. V.; Throckmorton, D. J.; Tran, H. M.; Brennan, J. S.; Giannobile, W. V.; Singh, A. K., Microfluidic immunoassays as rapid saliva-based clinical diagnostics. P Natl Acad Sci USA 2007, 104(13), 5268–5273.Google Scholar
2. Herr, A. E.; Hatch, A. V.; Giannobile, W. V.; Throckmorton, D. J.; Tran, H. M.; Brennan, J. S.; Singh, A. K., Integrated microfluidic platform for oral diagnostics. Ann N Y Acad Sci 2007, 1098, 362–74.Google Scholar
3. He, M.; Herr, A. E., Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis. Anal Chem 2009, 81(19), 8177–84.Google Scholar
4. Gasteiger, E.; Gattiker, A.; Hoogland, ; , C.; Ivanyi, I.; Appel, R. D.; Bairoch, A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. http://ca.expasy.org/tools/pi_tool.html (accessed April 11).Google Scholar
5. Matta, A., et al. ., Computational study of band-crossing reactions . JMEMS , 2004. 13(2): p. 310–322.Google Scholar
6. Harmon, B.J., Patterson, D.H., and Regnier, F.E., Mathematical treatment of electrophoretically mediated microanaIysis . Anal Chem , 1993. 65: p. 2655–2662.Google Scholar
7. Squires, T.M., Messinger, R.J., and Manalis, S.R., Making it stick: convection, reaction and diffusion in surface-based biosensors . Nat Biotechnol , 2008. 26(4): p. 417–426.Google Scholar
8. Hughes, A.J. and Herr, A.E., Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography . Anal Chem , 2010. 82: p. 3803–3811Google Scholar
9. Ng, A.H.C., Uddayasankar, U. and Wheeler, A.R., Analytical and Bioanalytical Chemistry, 2010, Volume 397, Number 3, 991–1007Google Scholar
10. Tia, S.Q.; He, M.; Kim, D; & Herr, A.E. “Multi-analyte on-chip native Western blotting.” Analytical Chemistry, 2011, 83(9):3581–8Google Scholar
11. Currie, D. J.; Dainton, F. S.; Watt, W. S., The Effect of pH on the Polymerization of Acrylamide in Water. Polymer 1965, 6(9), 451–453.Google Scholar
12. Cowie, J. M. G.; Arrighi, V., Polymers: Chemistry and Physics of Modern Materials. Third Edition ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2008; p 499.Google Scholar
13. Valdebenito, A.; Encinas, M. V., Chain transfer agents in vinyl polymerizations photoinduced by bimolecular photoinitiators. J Photoch Photobio A 2008, 194(2-3), 206–211Google Scholar