No CrossRef data available.
Article contents
TiO2 Film Morphology, Electron Transport and Electron Lifetime in Ultra-fast Sintered Dye-sensitized Solar Cells
Published online by Cambridge University Press: 15 January 2013
Abstract
With the application of near-infrared radiation (NIR), TiO2 films for dye-sensitized solar cells (DSCs) on metallic substrates can be sintered in just 12.5 s. The photovoltaic performance of devices made with NIR sintered films match those devices made with conventionally sintered films prepared by heating for 1800 s. Here we characterise the electron transport, electron lifetime and phase-morphological properties of ultrafast NIR sintered films, using impedance spectroscopy, transient photovoltage decay and x-ray diffraction measurements. An important factor in NIR processing of TiO2 films is the peak metal temperature (PMT) and we show that during the 12.5 second heat treatment that a PMT of around 635 °C gives near identical electron transport, electron lifetime and morphological properties, as well comparable photovoltaic performance to a conventionally sintered (500 °C, 30 mins) film. What is perhaps most interesting is that the rapid heating of the TiO2 (to temperatures of up to 785°C) does not lead to a large scale rutile phase transition. As such photovoltaic performance of resultant DSC devices is maintained even though the TiO2 has been at temperatures which traditionally would have reduced cell photocurrents via anatase-to-rutile phase transition.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2012