Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T09:49:53.315Z Has data issue: false hasContentIssue false

Tight Binding Molecular Dynamic Simulation of PETN Decomposition at An Extreme Condition

Published online by Cambridge University Press:  26 February 2011

Christine Jiang Wu
Affiliation:
[email protected] Lawrence Livermore National Lab Physics and Advanced Technologies 7000 East Av. L-045 Livermore CA 94551 United States 925-424-4096 925-422-2851
M. Riad Manaa
Affiliation:
[email protected] Lawrence Livermore National Lab Energetic Materials Center Livermore CA 94551 United States
Laurence E. Fried
Affiliation:
[email protected] Lawrence Livermore National Lab Energetic Materials Center Livermore CA 94551 United States
Get access

Abstract

It has been long speculated that extreme pressures and temperatures produce unexpected chemcial phenomena. In this presentation, I discussed the reaction kinetics obtained from a tight binding MD simulation of PETN decomposition

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, L. and Brower, K. R., J. Phys. Chem. 100 (1996) 18775.Google Scholar
2. Naud, D. L. and Brower, K. R., J. Org. Chem. 57 (1992) 3303.Google Scholar
3. Gruzdkov, Y. A. and Gupta, Y. M., J. Phys. Chem. A 104 (2000) 11169.Google Scholar
4. Hiskey, M. A., Bower, K. R. and Oxley, J. C., J. Phys. Chem. 95 (1991) 3955.Google Scholar
5. Gilman, J. J., Philos. Mag. B 67 (1993) 207.Google Scholar
6. Wu, C. J., Yang, L. H. and Fried, L. E., Quenneville, J. and Martinez, T. J., Phys. Rev. B. 67 (2003) 235101.Google Scholar
7. Manaa, M. R., Fried, L. E. and Reed, E. J., J. of Comp. Aided Mat. Design, 10 (2003) 75.Google Scholar
8. Wu, C. J., Ree, F. H. and Yoo, C. S., Prop. Explos. Pyrotech. 29 (2004) 296.Google Scholar
9. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Hauk, M., Frauenheim, T., Suhai, S., and Seifert, G., Phys. Rev. B 58 (1998) 7260.Google Scholar
10. Elstner, M., Hobza, P., Frauenheim, T., Suhai, S., and Kaxiras, E., J. Chem. Phys. 114 (2001) 5149.Google Scholar
11. Manaa, M. R., Fried, L. E., Melius, C. F., Elstner, M., and Frauenheim., Th. J. Phys. Chem. A, 106 (2002) 9024.Google Scholar
12. Margetis, D., Kaxiras, E., Elstner, M., Frauenheim, Th., and Manaa., M. R. J. Chem. Phys. 117 (2002) 788 Google Scholar
13. Cady, H. H. and Larson, A. C., Acta Cryst. B31, (1975), 1864.Google Scholar
14. Booth, A. D. and Llewellyn, F. J., J. Chem. Soc. (1947) 8375.Google Scholar
15. Ng, W. L., Field, J. E. and Hauser, H. M., J. Chem. Soc. Perkin Trans. 2 (1976) 637; J. Appl. Phys. 59 (1986) 3945.Google Scholar
16. Tarver, C. M., Tran, T. D. and Whipple, R. E., Prop. Explos. Pyrotech. 28, (2004) 189.Google Scholar
17. Fried, L. E. and Howard, W. M., J. Chem. Phys. 109 (1998) 7338.Google Scholar