Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T16:51:34.814Z Has data issue: false hasContentIssue false

Three-dimensional Structure of Twinned and Zigzagged One-dimensional Nanostructures Using Electron Tomography

Published online by Cambridge University Press:  01 February 2011

Han Sung Kim
Affiliation:
[email protected], Korea University, Materials chemistry, Jochiwon, Korea, Republic of
Yoon Myung
Affiliation:
[email protected], Korea University, Material Chemistry, Anam-dong Seongbuk-Gu, Seoul, Seongbuk-gu, 136-701 Korea, Korea, Republic of, 82-2-3290-3973, 82-2-3290-3992
Yong Jae Cho
Affiliation:
[email protected], Korea University, Materials Chemistry, Jochiwon, Korea, Republic of
Dong Myung Jang
Affiliation:
[email protected], Korea University, Materials Chemistry, Jochiwon, Korea, Republic of
Chan Soo Jung
Affiliation:
[email protected], Korea University, Materials Chemistry, Jochiwon, Korea, Republic of
Jae-Pyoung Ahn
Affiliation:
[email protected], Korea Institute of Science and Technology, Advanced Analysis Center, Seoul, Korea, Republic of
Jeunghee Park
Affiliation:
[email protected], United States
Get access

Abstract

Electron tomography and high-resolution transmission electron microscopy were used to characterize the unique 3-dimensional (3D) structures of twinned Zn3P2 (tetragonal) and InAs (zinc blende) nanowires synthesized by the vapor transport method. The Zn3P2 nanowires adopt a unique superlattice structure that consists of twinned octahedral slice segments having alternating orientations along the axial [111] direction of a pseudocubic unit cell. The apices of the octahedral slice segment are indexed as six equivalent <112> directions at the [111] zone axis. At each 30 degrees turn, the straight and zigzagged morphologies appear repeatedly at the <112> and <011> zone axes, respectively. The 3D structure of the twinned Zn3P2 nanowires is virtually the same as that of the twinned InAs nanowires. In addition, we analyzed the 3D structure of zigzagged CdO (rock salt) nanowires and found that they include hexahedral segments, whose six apices are matched to the <011> directions, linked along the [111] axial direction. We also analyzed the unique 3D structure of rutile TiO2 (tetragonal) nanobelts; at each 90 degree turn, the straight morphology appears repeatedly, while the in-between twisted form appears at the [011] zone axis. We suggest that the TiO2 nanobelts consist of twinned octahedral slices whose six apices are indexed by the <011>/<001> directions with the axial [010] direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hu, J.; Odom, T. W. Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.Google Scholar
2 Johansson, J. Karlsson, L. S. Svensson, C. P. T. Mårtensson, T. Wacaser, B. A. Deppert, K.; Samuelson, L. Seifert, W. Nature Mater. 2006, 5, 574.Google Scholar
3 Verheijen, M. A. Immink, G. de Smet, T. Borgström, M. T. Bakkers, E. P. A. M. J. Am. Chem. Soc. 2006, 128, 1353.Google Scholar
4 Tian, M. Wang, J. Kurtz, J. Mallouk, T. E. Chan, M. H. W. Nano Lett. 2003, 3, 919.Google Scholar
5 Li, Q. Gong, X. Wang, C. Wang, J. Ip, K. Hark, S. Adv. Mater. 2004, 16, 1436.Google Scholar
6 Davidson, F. M. III, Wiacek, R. Korgel, B. A. Chem. Mater. 2005, 17, 230.Google Scholar
7 Chen, H. Wang, J. Yu, H. Yang, H. Xie, S. Li, J. J. Phys. Chem. B 2005, 109, 2573.Google Scholar
8 Ross, F. M. Tersoff, J. Reuter, M. C. Phys. Rev. Lett. 2005, 95, 146104.Google Scholar
9 Ding, Y. Wang, Z. L. Sun, T. Qiu, J. Appl. Phys. Lett. 2007, 90, 153510.Google Scholar
10 Xiong, Q. Wang, J. Eklund, P. C. Nano Lett. 2006, 6, 2736.Google Scholar
11 Han, W. –Q.; Wu, L. Stein, A. Zhu, Y. Misewich, J. Warren, J. Angew. Chem. Int. Ed. 2006, 45, 6554.Google Scholar
12 Shen, G. Chen, P.–C.; Bando, Y. Golberg, D. Zhou, C. J. Phys. Chem. C. 2008, 112, 16405.Google Scholar
13 Wang, D.-H.; Xu, D. Wang, Q. Hao, Y.–J.; Jin, G.–Q.; Guo, X.–Y.; Tu, K. N. Nanotech. 2008, 19, 215602.Google Scholar
14 Tao, X. Li, X. Nano Lett. 2008, 8, 505.Google Scholar
15 Bao, J. Bell, D. C. Capasso, F. Wagner, J. B. Mårtensson, T. Trägårdh, J. Samuelson, L. Nano Lett. 2008, 8, 836.Google Scholar
16 Meng, Q. Jiang, C. Mao, S. X. J. Cryst. Growth 2008, 310, 4481.Google Scholar
17 Fu, X. Jiang, J. Zhang, W. Yuan, J. Appl.Phys. Lett. 2008, 93, 043101.Google Scholar
18 Yin, L. W. Lee, S. T. Nano Lett. 2009, 9, 957.Google Scholar
19 Wang, Z. W. Li, Z. Y. Nano Lett. 2009, 9, 1467.Google Scholar
20 Yang, Y. Scholz, R. Fan, H. J. Hesse, D. Gösele, U. Zacharias, M. ACS Nano 2009, 3, 555.Google Scholar
21 Shen, X. S. Wang, G. Z. Hong, X. Xie, X. Zhu, W. Li, D. P. J. Am. Chem. Soc. 2009, 131, 10812.Google Scholar
22 Dayeh, S. A. Susac, D. Kavanagh, K. L. Yu, E. T. Wang, D. Adv. Funct. Mater. 2009, 19, 2102.Google Scholar
23 Ikoniæ, Z.; Srivastava, G. P. Inkson, J. C. Phys. Rev. B 1993, 48, 17181.Google Scholar
24 Verheijen, M. A. Algra, R. E. Borgström, M. T. Immink, G. Sourty, E. van Enckevort, W. J. P.; Vlieg, E. Bakkers, E. P. A. M. Nano Lett. 2007, 7, 3051.Google Scholar
25 Han, Y. Zhao, L. Ying, J. Y. Adv. Mater. 2007, 19, 2454.Google Scholar
26 Kim, H. S. Hwang, S. O. Myung, Y. Park, J. Bae, S. Y. Ahn, J. P. Nano Lett. 2008, 8, 551.Google Scholar
27 Arslan, I. Talin, A. A. Wang, G. T. J. Phys. Chem. C. 2008, 112, 11093.Google Scholar
28 Ersen, O. Bégin, S. Houlle, M. Amadou, J. Janowska, I. Greneche, J.–M; Crucifix, C. Pham-Huu, C. Nano Lett. 2008, 8, 1033.Google Scholar
29 Heigoldt, M. Arbiol, J. Spirkoska, D. Rebled, J. M. Conesa-Boj, S. Abstreiter, G. Peiró, F.; Morante, J. R. Fontcuberta i Morral, A. J. Mater. Chem. 2009, 19, 840.Google Scholar
30 Arslan, I. Tong, J. R. Midgley, P. A. Ultramicroscopy 2006, 106, 994.Google Scholar
31 Zdanowicz, W. Kloc, K. Kaliñska, A. Cisowska, E. Burian, A. J. Cryst. Growth 1975, 31, 56.Google Scholar
32 Zanin, I. E. Aleinikova, K. B. Afanasiev, M. M. Antipin, M. Y. J. Struct. Chem. 2004, 45, 844.Google Scholar
33 Shen, G. Bando, Y. Ye, C. Yuan, X. Sekiguchi, T. Golberg, D. Angew. Chem. Int. Ed. 2006, 45, 7568.Google Scholar
34 Yang, R. Chueh, Y.–L.; Morber, J. R. Snyder, R. Chou, L.–J.; Wang, Z. L. Nano Lett. 2007, 7, 269.Google Scholar
35 Liu, C. Dai, L. You, L. P. Xu, W. J. Ma, R. M. Yang, W. Q. Zhang, Y. F. Qin, G. G. J. Mater. Chem. 2008, 18, 3912.Google Scholar