Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T09:15:38.268Z Has data issue: false hasContentIssue false

Thin-Film Transistors in CO2-Laser Crystallized Silicon Films On Fused Silica

Published online by Cambridge University Press:  15 February 2011

N. M. Johnson
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
H. C. Tuan
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
M. D. Moyer
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
M. J. Thompson
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
D. K. Biegelsen
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
L. E. Fennell
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
A. Chiang
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
Get access

Abstract

Thin-film transistors (TFT) have been fabricated in scanned CO2 laser-crystallized silicon films on bulk fused silica. In n-channel enhancement-mode transistors, it is demonstrated that an excessively large leakage current can be electric-field modulated with a gate electrode located beneath the silicon layer. This dual-gate configuration provides direct verification on bulk glass substrates of back-channel leakage as has recently been demonstrated for beam-crystallized silicon films on thermal oxides over silicon wafers. With the application of deep-channel ion implantation to suppress back-channel leakage, high-peformance TFTs have been fabricated in single-crystal silicon films on fused silica. The results demonstrate that scanned CO 2 laser processing of silicon films on bulk glass can provide the basis for a silicon-on-insulator technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kamins, T. I. and Pianetta, P. A., Electron Device Lett. EDL– 1, 214 (1980).Google Scholar
2.Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Insulating Films on Semiconductors (Springer - Verlag, New York, 1981) eds. Schulz, M. and Pensl, G., pp. 234237.Google Scholar
3.Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 38, 900 (1981).Google Scholar
4.Biegelsen, D. K., Johnson, N. M., Nemanich, R. J., Moyer, M. D., and Fennell, L., Laser and Electron Beam Interactions with Solids (Elsevier, New York, 1982), eds. Appleton, B. R. and Celler, G. K., pp. 331336.Google Scholar
5.Tsaur, B-Y., Geis, M. W., Fan, J. C. C., Silversmith, D. J., and Mountain, R. W., Laser and Electron - Beam Interactions with Solids (Elsevier, New York, 1982), eds. Appleton, B. R. and Celler, G. K., pp. 585590.Google Scholar
6.Johnson, N. M., Biegelsen, D. K., Tuan, H. C., Moyer, M. D., and Fennell, L. E., Electron Device Letters (in press).Google Scholar
7.Lam, H. W., Sobczak, Z. P., Pinizzotto, R. F., and Tasch, A. F. Jr.,IEEE Trans. Electron Devices ED–29, 389 (1982).Google Scholar
8.Biegelsen, D. K., Johnson, N. M., Bartelink, D. J., and Moyer, M. D., Appl. Phys. Lett. 38, 150 (1981).Google Scholar
9.Biegelsen, D. K., Johnson, N. M., Bartelink, D. J., and Moyer, M. D., Laser and Electron-Beam Solid Interactions and Materials Processing (Elsevier, New York, 1981), eds. Gibbons, J. F., Hess, L. D., and Sigmon, T. W., pp. 487494.Google Scholar
10.Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Laser and Electron-Beam Solid Interactions and Materials Processing (Elsevier, New York, 1981), eds. Gibbons, J. F., Hess, L. D., and Sigmon, T. W., pp. 463470.Google Scholar
11.Hawkins, W. G., Black, J. G., and Griffiths, C. H., Appl. Phys. Lett. 40, 319 (1982).Google Scholar
12.Hawkins, W. G., Black, J. G., and Griffiths, C. H., Laser and Electron Beam Interactionswith Solids (Elsevier, New York, 1982), eds. Appleton, B. R. and Celler, G. K., pp. 529534.Google Scholar
13.Biegelsen, D. K., Johnson, N. M., Hawkins, W. G., Fennell, L. E., and Moyer, M. D., these proceedings.Google Scholar
14.Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981), 2nd ed., ch. 8.Google Scholar
15.Tremain, R., private communication.Google Scholar
16.Tsaur, B-Y., Fan, J. C. C., and Geis, M. W., Appl. Phys. Lett. 40, 322 (1982).Google Scholar
17.Lyon, S. A., Nemanich, R. J., Johnson, N. M., and Biegelsen, D. K., Appl. Phys. Lett. 40, 316 (1982).Google Scholar