Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:22:20.802Z Has data issue: false hasContentIssue false

Thin Film Superconducting MgB2 Grown by MBE without Post-Anneal

Published online by Cambridge University Press:  18 March 2011

William Jo
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305-4045
Jeong-Uk Huh
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305-4045
Tsuyoshi Ohnishi
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305-4045
Ann F. Marshall
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305-4045
Malcolm R. Beasley
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305-4045
Robert H. Hammond
Affiliation:
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305-4045
Get access

Abstract

We report the synthesis of superconducting MgB2 thin films grown in-situ by molecular beam epitaxy (MBE). Mg-rich fluxes are deposited with B-flux by electron beam evaporation onto c- and r-plane sapphire substrates. Deposition temperature is varied between 260 ∼ 320 °C. Base pressure of the MBE chamber is at low 10-10 Torr, rising to 10-8 Torr during deposition due mostly to the presence of hydrogen and nitrogen. Asgrown MgB2 films show superconducting transition at ∼ 34 K with ΔTc < 1 K. The films on c-plane sapphire substrates exhibit c-axis oriented peaks of MgB2, and full-width at half maximum of 3 degree in their rocking curves. Azimuthal phi-scan of the MgB2(101) peak shows 12-fold symmetric peaks, which is confirmed by selected area diffraction pattern in transmission electron microscopy (TEM). Plan-view TEM shows hexagonal-shaped grain growth with grain size of about 400 Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature (London) 410, 63 (2001).Google Scholar
2. Kang, W. N., Kim, H.-J., Choi, E.-M., Jung, C. U., and Lee, S.-I., Science, 292, 1521 (2001).Google Scholar
3. Eom, C. B., Lee, M. K., Choi, J. H., Belenky, L. J., Song, X., Colley, L. D., Naus, M. T., Patnaik, S., Jiang, J., Rikel, M., Polyanskii, A., Gurevich, A., Cai, X. Y., Bu, S. D., Babcock, S. E., Hellstrom, E. E., Larbalestier, D. C., Rogado, N., Regan, K. A., Hayward, M. A., He, T., Slusky, J. S., Inumaru, K., Hass, M. K., and Cava, R. J., Nature (London) 411, 558 (2001).Google Scholar
4. Paranthaman, M., Cantoni, C., Zhai, H. Y., Christen, H. M., Aytug, T., Sathyamurthy, S., Specht, E. D., Thompson, J. R., Lowndes, D. H., Kerchner, H. R., and Christen, D. K., Appl. Phys. Lett. 78, 3669 (2001).Google Scholar
5. Blank, D. H. A., Hilgenkamp, H., Brinkman, A., Mijatovic, D., Rijnders, G., and Rogalla, H., Appl. Phys. Lett. 79, 394 (2001).Google Scholar
6. Moon, S. H., Yun, J. H., Lee, H. N., Kye, J. I., Kim, H. G., Chung, W., and Oh, B., Appl. Phys. Lett. 79, 2429 (2001).Google Scholar
7. Berenov, A., Lockman, Z., Qi, X., MacManus-Driscoll, J., Bugoslavsky, Y., Cohen, L. F., Jo, M.-H., Stelmashenko, N. A., Tsaneva, V. N., Kambara, M., Babu, N. Hari, Cardwell, D. A., and Blamire, M. G., Appl. Phys. Lett. 79, 4001 (2001).Google Scholar
8. Ueda, K. and Naito, M., Appl. Phys. Lett. 79, 2046 (2001).Google Scholar
9. Liu, Z.-K., Schlom, D. G., Li, Q., and Xi, X. X., Appl. Phys. Lett. 78, 3678 (2001).Google Scholar
10. Canfield, P. C., Finnermore, D. K., Bud'ko, S. L., Ostenson, J. E., Lapertot, G., Cunningham, C. E., and Petrovic, C., Phys. Rev. Lett. 86, 2423 (2001).Google Scholar