Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T05:07:45.633Z Has data issue: false hasContentIssue false

Thin Film Decoupling Circuits, Making Use of a Three-dimensional Integration of Thin Film Passive Components

Published online by Cambridge University Press:  10 February 2011

M. Klee
Affiliation:
Philips GmbH Forschungslaboratorien Aachen, Weiβhausstr. 2, 52066 Aachen, Germany, [email protected]
P. Löbl
Affiliation:
Philips GmbH Forschungslaboratorien Aachen, Weiβhausstr. 2, 52066 Aachen, Germany, [email protected]
R. Kiewitt
Affiliation:
Philips GmbH Forschungslaboratorien Aachen, Weiβhausstr. 2, 52066 Aachen, Germany, [email protected]
W. Brand
Affiliation:
Philips GmbH Forschungslaboratorien Aachen, Weiβhausstr. 2, 52066 Aachen, Germany, [email protected]
P. van Oppen
Affiliation:
Philips Advanced Ceramics and Modules, Roermond
P. Lok
Affiliation:
Philips Discrete Semiconductors, Nijmegen
Get access

Abstract

In electronic circuits besides active devices a major part of the components are discrete passive components such as capacitors, resistors and inductors. Especially in the telecommunication circuits, miniaturisation is a major issue. To achieve a high degree of miniaturisation of passive components, thin film processes have been applied. A thin film module for high frequency applications has been demonstrated with a three-dimensional integration of a thin film resistor, a thin film X7R capacitor and a thin film NP0 capacitor processed on top of each other.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, D. H., Integrated Ferroelectrics, 17, 113126 (1997)Google Scholar
2. Mazure, C., Alsmeier, J., Dehm, C., Hönlein, W., Integrated Ferroelectrics, 21, 1525 (1998)Google Scholar
3. Larsen, P. K., Spierings, G. A. C. M., Cuppens, R., Dormans, G. J. M., Microelectronic Engineering, 22, 5360 (1993)Google Scholar
4. Jones, R. E., Zurchner, P., Chu, P., Taylor, D. J., Lii, Y. T., Jiang, B., Maniar, P. D., Gillespie, S. J., Microelectronic Engineering 29, 310 (1995)Google Scholar
5. Araujo, C. A. Paz De, Solvayappan, N., McMillan, L. D., Otsuki, T., Arita, K., J. of the Electroceramics. 3,2, 135–142 (1999)Google Scholar
6. Klee, M., 9th Cimtec-World Ceramics Congress, Ceramics, Getting into the 2000's - Part E, P. Vincenzini, 629640 (1999)Google Scholar
7. Klee, M., Mackens, U., Fleuster, M., Phys. BI.55, 1, 4345 (1999)Google Scholar
8. Klee, M., Mackens, U., Kiewitt, R., Metzmacher, C., Philips Journal or Research, 51, 3, 363–387 (1998)Google Scholar
9. Samber, M. de, Tegelaers, L., Philips Journal of Research, 51, 3, 389–410 (1998),Google Scholar
10. Pulsford, N., Philips Journal of Research, 51, 3, 411–428 (1998)Google Scholar
11. Schwartz, R. W., Dimos, D., Lockwood, S. J., Torres, V. M., Mat. Res. Soc. Symp. Proc., “Ferroelectric Thin Films Ill’ edited by Tuttle, B. A., Myers, E. R., Desu, S. B., Larsen, P. K., 310, 5964(1993)Google Scholar
12. Bland, T., Patel, A., Wright, R., Sethi, R., Dennis, P., Whitaker, P., Kirby, P., Hydes, A., Brandfield, M., Vizard, C., Grantham, A., Wedd, M., Integrated Ferroelectrics, 17, 205212 (1997)Google Scholar
13. Ueda, D., J. of the Electroceramics, 3, 2, 105113 (1999)Google Scholar