Published online by Cambridge University Press: 01 March 2011
The low loss coefficient and high elastic energy storage of amorphous metals may provide novel opportunities in the design of stringed musical instruments. To produce prototypes for metallic glass music wire, bulk metallic glass pre-forms were reheated into the supercooled liquid region and stretched into wires. Investigations of these wires’ geometrical, mechanical, and physical properties are reported. The process is relatively simple and could be practical for producing continuous wire. A theoretical analysis shows the importance of the interaction between heating power input, radiative and convective cooling, and area reduction in determining the wire’s final properties.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.