Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:44:30.587Z Has data issue: false hasContentIssue false

Thermomechanical Behaviour of Biodegradable Shape-memory Polymer Foams

Published online by Cambridge University Press:  31 January 2011

Samy A Madbouly
Affiliation:
[email protected], Centre for Biomedical Development, Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH,, Teltow, Germany
Karl Kratz
Affiliation:
[email protected], Centre for Biomedical Development, Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH,, Teltow, Germany
Frank Klein
Affiliation:
[email protected], Centre for Biomedical Development, Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH,, Teltow, Germany
Karola Lüetzow
Affiliation:
[email protected], Centre for Biomedical Development, Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH,, Teltow, Germany
Andreas Lendlein
Affiliation:
[email protected], Centre for Biomedical Development, Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH,, Teltow, Germany
Get access

Abstract

Shape-memory polymer foams based on poly(ω-pentadecalactone) (PPDL) and poly(ε-caprolactone) (PCL) multiblock copolymer with 60 wt% PCL content were prepared by environmentally-friendly high pressure supercritical carbon dioxide scCO2 foaming technique. A foam with a density of approximately 0.11 ± 0.02 g/cm3 and an average pore size of 150-200 μm with excellent compressibility and shape-memory properties was created at 25 bar/s depressurization rate in the temperature range between 78 and 84 °C. The shape-memory behavior of this foam was investigated using different programming modules, such as, under stress-free condition and under constant strain condition. The thermally-induced shape-memory effect (SME) was found to be strongly dependent on the programming conditions. Excellent shape fixity has been observed for all foams indicating the high efficiency of the switching domains to fix the temporary shape by crystallization. The stress recovery of this foam could be controlled by changing compression percentage (εc%) at a constant compression temperature. The production of these foams with unprecedented properties by commercially available processing equipment raises much hope with the potential to provide new materials with a unique combination of shape-memory properties and porous structure as well as desired properties for many industrial and biomedical applications

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Behl, M., Lendlein, A., Soft Matter, 2007, 3, 58 10.1039/B610611KGoogle Scholar
2 Kelch, Bellin S. , Langer, R., Lendlein, A., Proc. Natl. Acad. Sci. USA, 2006, 103, 1804318047.Google Scholar
3 Jiang, H., Kelch, S., Lendlein, A., Adv. Mat., 2006, 18, 14711475.10.1002/adma.200502266Google Scholar
4 Lendlein, A., Jiang, H., Jünger, O., Langer, R., Nature, 2005, 434, 879882.10.1038/nature03496Google Scholar
5 Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A., Proc. Natl. Acad. Sci. USA, 2006, 103, 35403545.10.1073/pnas.0600079103Google Scholar
6 Leng, J., Lv, H., Liu, Y., Du, S., J. Appl. Phys. 2008, 104, 104917.10.1063/1.3026724Google Scholar
7 Tobushi, H., Okumura, K., Endo, M., Hayashi, S., J. Intell. Mater. Syst. Struct., 2001, 12, 283.10.1106/FNSX-AP9V-QP1R-NMWVGoogle Scholar
8 Sokolowski, M., Hayashi, S., Yamada, T., “Cold Hibernated elastic memory (CHEM) self deployable structures Smart Structures and Materials: Electroactive Polymer Actuators and Devices 1999 (Bellingham, WA: SPIE Optical Engineering Press).Google Scholar
9 Tai, H., Mather, M. L., Howard, D., Wang, W., White, L. J., Crowe, J. A., Morgan, S. P., Chandra, A., Williams, D. J., Howdle, S. M., Shakesheff, K. M., Eur. Cell. Mater. J., 2007, 14, 64.10.22203/eCM.v014a07Google Scholar
10 Ping, P., Wang, W. S., Chen, X. S., Jing, X. B., Biomacromolecules 2005, 6, 587.10.1021/bm049477jGoogle Scholar
11 Kratz, K., Voigt, U., Wagermaier, W., Lendlein, A., in Advances in Material Design for Regenerative Medicine, Drug Delivery, and Targeting/Imaging, Material Research Society Symposium Proceedings Volume 1140, Warrendale, PA, 2009), 1140–HH03Google Scholar
12 Kumar, A., Kalra, B., Dekhterman, A., Gross, R., Macromolecules 2000, 33, 63036309.10.1021/ma000344+Google Scholar
13 Luetzow, K., Klein, F., Weigel, T., Apostel, R., Weiss, A., Lendlein, A., J. Biomech. 2007, 40, S80.10.1016/j.jbiomech.2007.02.022Google Scholar
14 Filmon, R., Retailleau, N.-Gaborit, Grizon, F., Galloyer, M., Cincu, C., Basle, M. F., Chappard, D., Biomater, J.. Sci. Polym. Ed. 2002, 13, 11051117.Google Scholar
15 Kojio, K., Nakamura, S., Furukawa, M., Polymer 2004, 45, 81478152.10.1016/j.polymer.2004.09.061Google Scholar
16 Koerner, H., Price, G., Pearce, N. A., Alexander, M., Vaia, R. A., Nature Materials 2004, 3, 115.10.1038/nmat1059Google Scholar
17 Okamoto, M., Kubo, H., Kotaka, T., Macromolecules 1999, 32, 62066214.10.1021/ma990186qGoogle Scholar
18 Gall, K., Yakacki, C. M., Liu, Y. P., Shandas, R., Willett, N., Anseth, K. S., Journal of Biomedical Materials Research, Part A 2005, 73A, 339.10.1002/jbm.a.30296Google Scholar
19 Miyamoto, Y., Fukao, K., Yamao, H., Sekimoto, K., Phys. Rev. Lett. 2002, 88, 225504 10.1103/PhysRevLett.88.225504Google Scholar