Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T02:23:39.068Z Has data issue: false hasContentIssue false

Thermomechanical Behavior and Properties of Passivated Pvd and Ecd Cu Thin Films

Published online by Cambridge University Press:  01 February 2011

M. Gregoire
Affiliation:
STMicroelectronics, Crolles2 Alliance, 850 rue Jean Monnet, 38926 Crolles, France
S. Kordic
Affiliation:
Philips Semiconductors, Crolles2 Alliance, 860 rue Jean Monnet, 38920 Crolles, France
P. Gergaud
Affiliation:
TECSEN, CNRS, Université of Aix-Marseille III, Faculté St Jérôme, 13397 Marseille, France
O. Thomas
Affiliation:
TECSEN, CNRS, Université of Aix-Marseille III, Faculté St Jérôme, 13397 Marseille, France
M. Ignat
Affiliation:
LTPCM-INPG, CNRS, Domaine Universitaire, BP 75, 38402 St Martin d'Hères, France
Get access

Abstract

The thermomechanical behavior is investigated of SiCN-encapsulated blanket Physical Vapor Deposited (PVD) and Electrochemically Deposited (ECD) Cu films. At lower ECD Cu film thicknesses an anomalous shape and a tail of the stress-temperature curve are observed, which are not caused by impurities at the interfaces, but are correlated to highly textured microstructure. Repeated thermal cycling of up to 400 °C does not markedly change the texture of the films, but a significant texture change takes place with increasing ECD Cu thickness. Thermal cycling induces grain growth for thicker films only. Impurity content and distribution in the PVD films do not change due to cycling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nix, W.D., Metall. Trans. A 20A, 2217 (1989).Google Scholar
2. Gregoire, M., Kordic, S., Ignat, M., Federspiel, X., Vannier, P., and Courtas, S., Int. Interconnect Tech. Conf. (2005).Google Scholar
3. Flinn, P.A., MRS Symp. Proc. 130, 41 (1988).Google Scholar
4. Keller, R.M., Sigle, W., Baker, S.P., Kraft, O., and Arzt, E., Mat. Res. Soc. Symp. Proc. 436, 221 (1997).Google Scholar
5. Baker, S.P., Keller, R.M., Kretschmann, A., and Arzt, E., Mat. Res. Soc. Symp. Proc. 516, 287 (1998).Google Scholar
6. Zielinski, E.M., Vinci, R.P., and Bravman, J.C., Appl. Phys. Lett. 67 (8), 1080 (1995).Google Scholar
7. Kuschke, W.M., Kretschmann, A., Keller, R.-M., Vinci, R.P., Kaufmann, C., and Arzt, E., J. Mater. Res. 13, 2962 (1998).Google Scholar
8. Baker, S.P., Kretschmann, A., and Arzt, E., Acta. Mater. 49, 2145 (2001).Google Scholar
9. Keller, R.M., Baker, S.P., and Arzt, E., J. Mater. Res. 13, 1307 (1998).Google Scholar
10. Shu, J.B., Clyburn, S. B., Mates, T.E., and Baker, S.P., J. Mater. Res. 18 (9), 2122 (2003).Google Scholar
11. Stoney, G.G., Proc. Roy. Soc. Lond. A82, 172 (1909).Google Scholar
12. Towsend, P.H., Barnett, D.M., and Brunner, T.A., J. Appl. Phys. 62 (11), 4438 (1987).Google Scholar
13. Baker, S.P., Keller, R.M.-Flaig, and Shu, J.B., Acta. Mater. 51, 3019 (2003).Google Scholar