Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T09:51:29.987Z Has data issue: false hasContentIssue false

Thermodynamic Analysis of the Hysteresis Offsets from Polarization Graded Ferroelectric Materials

Published online by Cambridge University Press:  11 February 2011

Z.-G. Ban
Affiliation:
Department of Metallurgy and Materials Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269
S. P. Alpay
Affiliation:
Department of Metallurgy and Materials Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269
J. V. Mantese
Affiliation:
Delphi Research Laboratories, Shelby Township, MI 48315
Get access

Abstract

Polarization graded ferroelectrics exhibit unconventional electrical properties that are not usually observed from homogenous ferroelectrics. Systematic spatial variations in the polarization in a ferroelectric material can be achieved by composition, temperature, and stress gradients; resulting in the displacement of the polarization vs. electric field hysteresis curve along the polarization axis. In this paper, this unusual phenomenon of hysteresis offset has been examined in BaTiO3 and BaxSr1-xTiO3 material systems using a Landau-Ginzburg phenomenological model for the first time. It is shown that the spatial non-uniformities can give rise to non-uniformities in polarization with corresponding spatial variations. This non-uniform polarization results in asymmetrical hysteresis with “up” or “down” charge offsets which are strongly dependent upon the magnitude and direction of the temperature, composition and stress gradients for three graded ferroelectrics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Mantese, J.V. and Schubring, N.W., Integ. Ferr. 37, 245 (2001).Google Scholar
2. Mantese, J.V., Schubring, N.W., Micheli, A.L., Mohammed, M.S., Naik, R. and Auner, G.W., Appl. Phys. Lett. 71, 2047 (1997).Google Scholar
3. Brazier, M., McElfresh, M. and Mansour, S., Appl. Phys. Lett. 72, 1121 (1998).Google Scholar
4. Bao, D., Mizutani, N., Zhang, L. and Yao, X., J. Appl. Phys. 89, 801 (2001).Google Scholar
5. Fellberg, W., Mantese, J.V., Schubring, N.W. and Micheli, A.L., Appl. Phys. Lett. 78, 524 (2001).Google Scholar
6. Mantese, J.V., Schubring, N.W., Micheli, A.L., Thompson, M.P., Naik, R., Auner, G.W., Misirlioglu, I.B. and Alpay, S.P., Appl. Phys. Lett. 81, 1068 (2002).Google Scholar
7. Kretschmer, R. and Binder, K., Phys. Rev. B 20, 1065 (1979).Google Scholar
8. Kadanoff, L.P., Gotze, W., Hamblen, D., Hecht, R., Lewis, E.A.S., Paiciauskas, V.V., Rayl, M., Swift, J., Aspnes, D. and Kane, J., Rev. Modern Phys. 39, 395 (1967).Google Scholar
9. Landau, L.D. and Lifshitz, E.M., Statistical Physics (Pergamon Press, Oxford, 1980).Google Scholar
10. Roytburd, A.L. and Slutsker, J., Acta Mater. 50, 1809 (2002).Google Scholar
11. Qu, B.D., Zhong, W.L. and Prince, R.H., Phys. Rev. B 55, 11218 (1997).Google Scholar
12. Pertsev, N.A., Zembilgotov, A.G. and Tagantsev, A.K., Phys. Rev. Lett. 80, 1988 (1998).Google Scholar
13. Pertsev, N.A., Tagantsev, A.K. and Setter, N., Phys. Rev. B 61, R825 (2000).Google Scholar
14. Chen, Z., Arita, K., Lim, M. and Araujo, C.A.P., Integ. Ferr. 24, 181 (1999).Google Scholar