Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T16:42:49.988Z Has data issue: false hasContentIssue false

Thermodynamic Analysis of Carbon Nucleation on a Metal Surface

Published online by Cambridge University Press:  15 March 2011

Vladimir L. Kuznetsov
Affiliation:
Boreskov Institute of Catalysis, Lavrentieva 5, 630090 Novosibirsk, Russia
Anna N. Usoltseva
Affiliation:
Boreskov Institute of Catalysis, Lavrentieva 5, 630090 Novosibirsk, Russia
Andrew L. Chuvilin
Affiliation:
Boreskov Institute of Catalysis, Lavrentieva 5, 630090 Novosibirsk, Russia
Elena D. Obraztsova
Affiliation:
Institute of General Physics, 38 Vavilov Street, 117942 Moscow, Russia
Jean-Marc Bonard
Affiliation:
Institut de Physique Expérimentale, Ecole Polytechnique Fédérale de Lausanne, CH1015 Lausanne, Switzerland
Get access

Abstract

A thermodynamic analysis of the carbon nucleation on the metal surface was performed. From the consideration of the catalytic mechanisms of carbon deposit formation on the metal surface we concluded that majority of these mechanisms include some common steps. The most important of them is the step of nucleation of carbon deposit on the metal surface. The master equation for the dependence of critical radius of the nucleus on reaction parameters was obtained. This equation demonstrates that a variation of the reaction parameters, such as the temperature, the nature of metal catalyst and the degree of supersaturation of the metal-carbon solution, can lead to the formation of different carbon deposits, such as filamentous carbon, multi-wall nanotubes (MWNT) or single-wall nanotubes (SWNT). The analysis performed allows us to conclude that for selective production of SWNT the nucleation must proceed at high temperature on the surface of liquid metal particles (Fe, Co, Ni). For solid metal particles (Mo) a high degree of supersaturation with carbon is also required.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ebbesen, T.W., Carbon nanotubes: preparation and properties, (CRC Press, Boca Raton, Florida, 1997) p.54.Google Scholar
2. Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., Goldberg, H. A., Graphite fibers and filaments, (Springer-Verlag, Berlin, 1988) p. 20.Google Scholar
3. Kuznetsov, V. L., Usoltseva, A. N., Chuvilin, A. L., Obraztsova, E. D., Bonard, J-M., Phys. Rev. B 64, 1954 (2001).Google Scholar
4. Tomanek, D., Zhong, W., Krastev, E., Phys. Rev. B 48, 15461 (1993).Google Scholar
5. Robertson, D. H., Brenner, D. W., Mintmire, J. W., Phys. Rev. B 45, 12592 (1992).Google Scholar
6. Downs, W. B., Baker, R.T.K., J. Mater. Res. 10, 625 (1995).Google Scholar
7. Ivanov, V., Nagy, J. B., Lambin, Ph., Lucas, A., et al., Chem. Phys. Let. 223, 329 (1994).Google Scholar
8. Hernadi, K., Fonseca, A., Nagy, J. B., Bernaerts, D., Lucas, A. A., Carbon 34, 1249 (1996).Google Scholar
9. Bladh, K., Folk, L. K. L., Rohmund, F., Appl. Phys. A70, 317 (2000).Google Scholar
10. Bandow, S., Asaka, S., Saito, Y., Rao, A. M. et al., Phys. Rev. Let. 80, 3779 (1998).Google Scholar
11. Peigney, A., Laurent, Ch., Dobigeon, F., Rousset, A., J. Mater. Res. 12, 613 (1997).Google Scholar
12. Cheng, H. M., Li, F., Sun, X., Brown, S. D. M., et al., Chem. Phys. Lett. 289, 602 (1998).Google Scholar
13. Dai, H., Rinzler, A. G., Nikolaev, P., Smalley, R. E., et al., Chem. Phys. Lett. 260, 471 (1996).Google Scholar
14. Qin, L.-C., Iijima, S., Chem. Phys. Let. 269, 65 (1997).Google Scholar
15. Thess, A., Lee, R., Nikolaev, P. et al., Science 273, 483 (1996).Google Scholar
16. Yudasaka, M., Yamada, R., Sensui, N., Wilkins, T., et al., J. Phys. Chem. B 103, 6224 (1999).Google Scholar
17. Saito, Y., Okuda, M., Fujimoto, N., Yoshikawa, T., et al., Jpn. J. Appl. Phys. 33, L526 (1994).Google Scholar
18. Saito, Y., Koyama, T., Kawabata, K., Z. Phys. D 40, 421 (1997).Google Scholar
19. Takahashi, H., Sugano, M., Kasuya, A., Saito, Y., Kayama, T., Nishina, Y., J. Mater. Sci. Eng. A Struct. Mater. 217, 48 (1996).Google Scholar
20. Simoes, J. A. Martinho, Beauchamp, J. L., Chem. Rev. 90, 629 (1990).Google Scholar
21. Miyazaki, E., J. Catal. 65, 84 (1980).Google Scholar
22. Pauson, P. L., Organometallic Chemistry (Edward Arnold (Publ.) Ltd., London, 1967) p.23.Google Scholar
23. Hahner, J. H., Bronicovski, M. J., Azamian, B. R. et al., Chem. Phys. Lett. 296, 195 (1998).Google Scholar
24. Gavilet, A., Loiseau, A., Thibault, J., Journet, C., et al., submitted to Phys. Rev. Lett. & Carbon, 2001.Google Scholar
25. Geohegan, D. B., Peretzky, A. A. et al. in Amorphous and Nanostructed Carbon, edited by Sullivan, J. P., Robertson, J., Zhou, O., Allen, T.B. and Coll, B. F., (Mater. Res. Soc. Proc. 593, Boston 1999) pp. 315.Google Scholar
26. Nikolaev, P., Bronikowski, M. J., Bradley, R. K., et al., Chem. Phys. Lett., 313, 91 (1999).Google Scholar