Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T01:59:35.788Z Has data issue: false hasContentIssue false

Thermo-chemical metastability of multilayer epitaxial graphene oxide: Experiments and density functional theory calculations

Published online by Cambridge University Press:  22 August 2012

Si Zhou
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A.
S. Kim
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, U.S.A.
Y. Hu
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, U.S.A.
C. Berger
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, U.S.A.
W. de Heer
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, U.S.A.
Elisa Riedo
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, U.S.A.
Angelo Bongiorno
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A.
Get access

Abstract

Graphene oxide holds great promise for future applications in nano-technology. The chemistry of this material is not well understood. This understanding is crucial to enable future applications of graphene oxide. In this study, experiments and density functional theory calculations are combined to elucidate the chemical properties of multilayer graphene oxide obtained by oxidizing epitaxial graphene grown on silicon carbide via the Hummers method. This study shows that at room temperature as prepared graphene oxide films exhibit a uniform and homogeneous structure, include a minimal amount of edges and holes, and have an oxidation ratio of about 0.44. The comparison with density-functional calculations shows that graphene oxide includes a minimal amount of intercalated water molecules and well-defined fractions of epoxide and hydroxyl groups.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., and de Heer, W. A., Phys. Rev. Lett. 101, 026801 (2008).CrossRefGoogle Scholar
Eda, G., Fanchini, G., and Chhowalla, M., Nat. Nanotech. 3, 270 (2008).CrossRefGoogle Scholar
Robinson, J. T., Zalalutdinov, M., Baldwin, J. W., Snow, E. S., Wei, Z., Sheehan, P., and Houston, B. H., Nano Lett. 8, 3441 (2008).CrossRefGoogle Scholar
Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z. Q., and Sheehan, P. E., Nano Lett. 8, 3137 (2008).CrossRefGoogle Scholar
Gao, W., Singh, N., Song, L., Liu, Z., Reddy, A. L. M., Ci, L., Vajtai, R., Zhang, Q., Wei, B., and Ajayan, P. M., Nat. Nanotech. 6, 496 (2011).CrossRefGoogle Scholar
Hummers, W. S. Jr. and Offeman, R. E., J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Lerf, A., He, H., Forster, M., and Klinowski, J., J. Phys. Chem. B bf 102, 4477 (1998).CrossRefGoogle Scholar
Medhekar, N. V., Ramasubramaniam, A., Ruoff, R. S., Shenoy, V. B., ACS Nano 4, 2300 (2010).CrossRefGoogle Scholar
Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., and Shenoy, V. B., Nature Chem. 2, 581 (2010).CrossRefGoogle Scholar
Compton, O. C., Cranford, S. W., Putz, K. W., An, Z., Brinson, L. C., Buehler, M. J., and Nguyen, S. T., ACS Nano 6, 2008 (2012).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
Larciprete, R., Fabris, S., Sun, T., Lacovig, A. B. P., and Lizzit, S., J. Am. Chem. Soc. 133, 17315 (2011).CrossRefGoogle Scholar
Giannozzi, P. et al. ., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Grimme, S., J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
Pehlke, E. and Scheffler, M., Phys. Rev. Lett. 71, 2338 (1993).CrossRefGoogle Scholar