Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T16:18:41.475Z Has data issue: false hasContentIssue false

Thermal Strain Study of Almost Lattice-Matched Epitaxial InuGa1-uAs1-vP1-v Films on InP(100) Substrates

Published online by Cambridge University Press:  28 February 2011

G. Bai
Affiliation:
California Institute of Technology, Pasadena, CA 91125
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
S.-J. Kim
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R.G. Sobers
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J.W. Lee
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. Brelvi
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
P.M. Thomas
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D.P. Wilt
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Single layers of ~ 0.5µm thick InuGa1-uAs1-vPv (0.52 < u < 0.63 and 0.03 < v < 0.16) were grown epitaxially on InP(100) substrates by liquid phase epitaxy at ~ 630°C. The compositions of the films were chosen to yield a constant banndgap of ~ 0.8 eV (λ = 1.55 µm) at room temperature. The lattice mismatch at room temperature between the epitaxial film and the substrate varies from - 4 × 10-3 to + 4 × 10-3. The strain in the films was characterized in air by x-ray double crystal diffractometry with a controllable heating stage from 23°C to ~ 700°C. All the samples have an almost coherent interfaces from 23°C to about ~ 330°C with the lattice mismatch accomodated mainly by the tetragonal distortion of the epitaxial films. In this temperature range, the x-ray strain in the growth direction increases linearly with temperature at a rate of (2.0 ± 0.4) × 10-6/°C and the strain state of the films is reversible. Once the samples are heated above ~ 300°C, a significant irreversible deterioration of the epitaxial films sets in.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hsieh, J.J., Rossi, J.A., and Donnelly, J.P., Appl. Phys. Lett. 28, 709 (1976).Google Scholar
2Pearsall, T.P. and Hopson, R.W. Jr., J. Electron. Mater. 7, 133 (1978).Google Scholar
3Adachi, S., J. Appl. Phys. 53, 8775 (1982).Google Scholar
4Nakajima, K., Yamazaki, S., Komiya, S., and Akita, K., J. Appl. Phys. 52, 4575 (1981).Google Scholar
5 e.g., Zucker, J.E., Bar-Joseph, I., Miller, B.I., Koren, U., and Chemla, D.S., Appl. Phys. Lett. 33, 659 (1978).Google Scholar
6Nahory, R.E., Pollack, M.A., Johnston, W.D. Jr., and Barns, R.L., Appl. Phys. Lett. 33, 659 (1978).Google Scholar
7 e.g., Kobayashi, N. and Horkoshi, Y., Jpn. J. Appl. Phys. 18, 1005 (1979).Google Scholar
8 e.g., Runge, P.K. and Trichitta, P.R., J. Lightwave Tech. LT–2, 744 (1984).Google Scholar
9Moon, R.L., Antypas, G.A., and James, L.W., J. Electron. Mater. 3, 635 (1974).Google Scholar
10 e.g., Wakita, K., Takaoka, H., Seki, M., and Fukuda, M., Appl. Phys. Lett. 40, 525 (1982).Google Scholar
11Wilt, D.P., unpublished (1985).Google Scholar
12Rozgonyi, G.A., Petroff, P.M., and Panish, M.B., J. Appl. Phys. 64, 1173 (1978).Google Scholar
13Arsentev, I.N., Akhmedov, D., Konnikov, S.G., Mishurnyi, V.A., and Umanskii, V.E., Sov. Phys. Semicond. 14, 1389 (1980).Google Scholar
14Bai, G., Nicolet, M-A., Vreeland, T. Jr., Ye, Q., and Wang, K.L., Appl. Phys. Lett. 55, 1874 (1989).Google Scholar
15Bisaro, R., Merenda, P., and Pearsall, T.D., Appl. Phys. Lett. 34, 100 (1979).Google Scholar
16Bert, N.A., Gorelenok, A.T., Konnikov, S.G., Umanskii, V.E., and Usikov, A.S., Sov. Phys. Tech. Phys. 26, 610 (1981).Google Scholar
17Pietsch, U., Bak-Misiuk, J., and Gottschakh, V., Phys. Stst. Sol. 82, k137 (1984).Google Scholar