Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T23:21:37.242Z Has data issue: false hasContentIssue false

Thermal Stability of Ru Gate Electrode on HfSiO Dielectric

Published online by Cambridge University Press:  01 February 2011

Karol Frohlich
Affiliation:
[email protected], Institute of Electrical Engineering, SAS, Dept. of Thin Oxide Films, Dubravska 9, Bratislava, Slovakia, 841 04, Slovakia, 00 421 2 54 77 58 06, 00 421 2 54 77 58 16
Juan Pedro Espinos
Affiliation:
[email protected], Instituto de Ciencia de Materiales de Sevilla, CSIC, Avda. Americo Vespucio, Sevilla, Spain, 410 92, Spain
Andrej Vincze
Affiliation:
[email protected], International Laser Centre,, Ilkovicova 3, Bratislava, Slovakia, 812 19, Slovakia
Milan Tapajna
Affiliation:
[email protected], Institute of Electrical Engineering, SAS, Dubravska 9, Bratislava, Slovakia, 841 04, Slovakia
Kristina Husekova
Affiliation:
[email protected], Institute of Electrical Engineering, SAS, Dubravska 9, Bratislava, Slovakia, 841 04, Slovakia
Get access

Abstract

We have investigated advanced MOS structures containing Ru gate electrode, HfxSi1-xOy dielectric film and Si substrate. The Ru gate electrode was grown by MOCVD at 300 °C. The MOS structures were annealed for 30 min in forming gas and nitrogen at temperatures up to 550 °C. Capacitance-voltage measurements showed important shift of the flat band voltage of the Ru/ HfxSi1-xOy/Si gate stack after treatment at 550 °C. X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), reflection electron energy loss spectroscopy (REELS) and secondary ion mass spectroscopy (SIMS) were used to analyze interface between ruthenium and high-k dielectric film. Based on the analysis we were able to build up energy-band alignement for the Ru/ HfxSi1-xOy interface. We observed that the energy-band structure of the Ru/HfxSi1-xOy interface remains stable upon annealing in forming gas up to 550 °C. Presence of hydrogen revealed by SIMS can account for compensation of negative charges in HfxSi1-xOy during thermal treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jelenkovic, E. J. and Tong, K. Y., J. Vac. Sci. Technol. B 22, 2319 (2004).Google Scholar
2 Zhong, H. C., Heuss, G., Misra, V., Luan, H. F., Lee, C. H., and Kwong, D. L., Appl. Phys. Lett. 78, 1134 (2001).Google Scholar
3 Park, K. J., Doub, J. M., Gougousi, T., and Parsons, G. N., Appl. Phys. Lett. 86, 051903 (2005).Google Scholar
4 Tapajna, M., Pisecny, P., Luptak, R., Husekova, K., Frohlich, K., Harmatha, L., Hooker, J. C., Roozeboom, F., and Jergel, M., Mat. Sci. in Semicon. Proc. 7, 271 (2004).Google Scholar
5 Yeo, Y-C., King, T-J., and Hu, C., Appl. Phys. Lett. 92, 7266 (2002).Google Scholar
6 Shamiryan, D., Paraschiv, V., Claes, M., Boullart, W., in Defects in High-κ Gate Dielectric Stack, edited by Gusev, E. (NATO Science Series, Springer, Netherlands, 2006), p. 331.Google Scholar
7 Li, Q., Wang, S. J., Huan, A. C. H., Chai, J. W., Pan, J. S. and Ong, C. K., Appl. Phys. Lett. 85, 6155 (2004).Google Scholar
8 Kraut, E. A., Grant, R. W., Waldrop, J. R., and Kowalczyk, S. P., Phys. Rev. Lett. 44, 1620 (1980).Google Scholar
9 Garvie, L. A. J., Rez, P., Alvarez, J. R., Buseck, P. R., Solid State Commun. 106 (5), 303 (1998).Google Scholar
10 Houssa, M., Afanas'ev, V. V., Stesman, A., Heyns, M. M., Appl. Phys. Lett. 77 1885 (2000).Google Scholar